搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金及合金液体的局域五次对称性

李茂枝

引用本文:
Citation:

非晶合金及合金液体的局域五次对称性

李茂枝

Five-fold local symmetries in metallic liquids and glasses

Li Mao-Zhi
PDF
导出引用
  • 简要回顾了从20世纪30年代至今,有关非晶合金及合金液体的局域结构五次对称性的实验、理论和模拟研究.在简单液体的早期研究中,人们已经意识到五次对称性在简单液体的无序结构、过冷和晶化等起着重要作用,二十面体短程序作为五次对称性的典型代表受到了广泛关注.自从Frank提出简单液体中二十面体短程序的结构单元,大量的理论和实验研究已经明确在简单液体、合金液体和金属玻璃中存在局域五次对称性,并且建立了局域五次对称性与合金液体复杂动力学行为、玻璃转变、液体-液体相变以及非晶合金的形变等统一的定量描述和物理图像,表明了局域五次对称性作为结构参量的简单、普遍和有效性.
    In this article, we review the experimental, theoretical and simulation studies on five-fold local symmetries in metallic liquids and glasses. In the early study on simple liquid structure, it has been realized that five-fold local symmetry plays a key role in irregular structures, supercooling and crystallization of simple liquids. In particular, icosahedral short-range order, representative of five-fold local symmetry, has attracted much attention. In addition, researches proposed a dense random packing model for simple liquid structure in 1959, and found a wide variety of polyhedra and absolute predominance of pentagonal faces in simple liquids, and also pointed out that pentagonal arrangements can only occur in very complex structures such as some of the alloy structures. Based on the Frank's hypothesis of icosahedral short-range order as blocking unit in a simple liquid, a lot of theoretical and experimental efforts have been made to confirm its existence in simple liquids, metallic liquids and glasses. So far, several theoretical methods have been developed for characterizing local atomic structures in simple liquids, such as bond-orientational order parameter, Honeycutt-Andersen index, and Voronoi tessellation. Although the local atomic symmetries in atomic structures in metallic liquids and glasses can be characterized by these methods and the geometries of the atomic structures in liquids and glasses have received much more attention, an atomic cluster model has been developed for establishing the structure-property relationship in metallic liquid and glass. Due to the diversity of the atomic clusters in both type and population of different metallic liquids and glasses, the atomic cluster model could not present a simple description of structure-property relationship. Based on the fundamental characteristics of metallic liquids and glasses, five-fold local symmetry, the structure-property relationship in metallic liquids and glasses, such as dynamic crossover, glass transition, liquid-liquid phase transition, and deformation can be well described in simple, quantitative and unified ways, and therefore a clear physical picture can be provided. All these studies indicate that five-fold local symmetry as a structural parameter is simple, general and effective.
      通信作者: 李茂枝, maozhili@ruc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51631003)、国家重点基础研究发展计划(批准号:2015CB856800)、中央高校基本科研专项资金和中国人民大学科研基金(批准号:16XNLQ01)资助的课题.
      Corresponding author: Li Mao-Zhi, maozhili@ruc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51631003), the National Basic Research Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Royall C P, Williams S R 2015 Phys. Rep. 560 1

    [3]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99

    [4]

    Andersen H C 2005 Proc. Natl. Acad. Sci. USA 102 6686

    [5]

    Roland C M 2008 Soft Matter 4 2316

    [6]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [7]

    Ngai K 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) pp1-47

    [8]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [11]

    Li M Z 2014 J. Mater. Sci. Technol. 30 551

    [12]

    Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P, Wang W H 2017 Chin. Phys. B 26 016104

    [13]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [14]

    Bernal J D 1937 Trans. Faraday Soc. 33 27

    [15]

    Bernal J D 1964 Proc. Roy. Soc. Lond. A 280 299

    [16]

    Born M, Green H S 1946 Proc. Roy. Soc. A 188 10

    [17]

    Kirkwood J 1939 J. Chem. Phys. 7 919

    [18]

    Erying H 1936 J. Chem. Phys. 4 283

    [19]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [20]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43

    [21]

    Bernal J D 1959 Nature 183 141

    [22]

    Hoare M R 1976 Ann. N. Y. Acad. Sci. 279 186

    [23]

    Frank F C, Kasper J S 1958 Acta Cryst. 11 184

    [24]

    Bernal J D 1960 Nature 185 68

    [25]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [26]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [27]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Jonsson H, Andersen H C 1988 Phys. Rev. Lett. 60 2295

    [30]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G 2000 Nature 408 839

    [31]

    Spaepen F 2000 Nature 408 781

    [32]

    Wochner P, Gutt C, Autenreth T, Demmer T, Bugaev V, Ortiz A D, Duri A, Zontone F, Grubel G, Dosch H 2009 Proc. Natl. Acad. Sci. USA 106 11511

    [33]

    Cicco A D, Trapananti A, Faggioni S 2003 Phys. Rev. Lett. 91 135505

    [34]

    Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E 2004 Phys. Rev. Lett. 92 145502

    [35]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [36]

    Lee G W, Gangopadhyay A K, Croat T K, Rathz T J, Hyers R W, Rogers J R, Kelton K F 2005 Phys. Rev. B 72 174107

    [37]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [38]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [41]

    Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J, Ho K M 2008 Phys. Rev. B 78 184204

    [42]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [43]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [44]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [45]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [46]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505

    [47]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [48]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [49]

    Zemp J, Celino M, Schonfeld B, Loffler J F 2014 Phys. Rev. B 90 144108

    [50]

    Wu Z W, Li F X, Huo C W, Li M Z, Wang W H, Liu K X 2016 Sci. Rep. 6 35967

    [51]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [52]

    Sha Z D, Wu R Q, Lu Y H, Shen L, Yang M, Cai Y Q, Feng Y P, Li Y 2009 J. Appl. Phys. 105 043521(R)

    [53]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [54]

    Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108

    [55]

    Senkov O N, Cheng Y Q, Miracle D B, Barney E R, Hannon A C, Woodward C F 2012 J. Appl. Phys. 111 123515

    [56]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [57]

    Leocmach M, Tanaka H 2012 Nature Commun. 3 974

    [58]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nature Commun. 6 8310

    [59]

    Ding J, Patinet S, Falk M L, Cheng Y Q, Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052

    [60]

    Li M Z, Wang C Z, Mendelev M I. Ho K M 2008 Phys. Rev. B 77 184202

    [61]

    Finney J L 1977 Nature 266 309

    [62]

    Borodin V A 1999 Phil. Mag. A 79 1887

    [63]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139

    [64]

    Lee J C, Park K W, Kim K H, Fleury E, Lee B J, Wakeda M, Shibutani Y 2007 J. Mater. Res. 22 3087

    [65]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

    [66]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter 25 165701

    [67]

    Royall C P, Williams S R, Ohtsuka T, Tanaka H 2008 Nature Mater. 7 556

    [68]

    Li J D, Cao Y X, Xia C J, Kou B Q, Xiao X H, Fezzaa K, Wang Y J 2014 Nat. Commun. 5 5014

    [69]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [70]

    Shintani H, Tanaka H 2006 Nat. Phys. 2 200

    [71]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [72]

    Lagogianni A E, Krausser J, Evenson Z, Samwer K, Zaccone A 2016 J. Stat. Mech.: Theor. Exp. 8 084001

    [73]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [74]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nature Commun. 6 7696

    [75]

    Tanaka H 2012 Eur. Phys. J. E 35 113

    [76]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2016 J. Appl. Phys. 119 205108

    [77]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [78]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [79]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [80]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [81]

    Spaepen F 1977 Acta Metall. 25 407

    [82]

    Widmer-Cooper A, Perry H, Harrowell P, Reichman D R 2008 Nature Phys. 4 711

    [83]

    Yang X N, Liu R, Yang M C, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Royall C P, Williams S R 2015 Phys. Rep. 560 1

    [3]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99

    [4]

    Andersen H C 2005 Proc. Natl. Acad. Sci. USA 102 6686

    [5]

    Roland C M 2008 Soft Matter 4 2316

    [6]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [7]

    Ngai K 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) pp1-47

    [8]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [11]

    Li M Z 2014 J. Mater. Sci. Technol. 30 551

    [12]

    Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P, Wang W H 2017 Chin. Phys. B 26 016104

    [13]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [14]

    Bernal J D 1937 Trans. Faraday Soc. 33 27

    [15]

    Bernal J D 1964 Proc. Roy. Soc. Lond. A 280 299

    [16]

    Born M, Green H S 1946 Proc. Roy. Soc. A 188 10

    [17]

    Kirkwood J 1939 J. Chem. Phys. 7 919

    [18]

    Erying H 1936 J. Chem. Phys. 4 283

    [19]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [20]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43

    [21]

    Bernal J D 1959 Nature 183 141

    [22]

    Hoare M R 1976 Ann. N. Y. Acad. Sci. 279 186

    [23]

    Frank F C, Kasper J S 1958 Acta Cryst. 11 184

    [24]

    Bernal J D 1960 Nature 185 68

    [25]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [26]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [27]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Jonsson H, Andersen H C 1988 Phys. Rev. Lett. 60 2295

    [30]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G 2000 Nature 408 839

    [31]

    Spaepen F 2000 Nature 408 781

    [32]

    Wochner P, Gutt C, Autenreth T, Demmer T, Bugaev V, Ortiz A D, Duri A, Zontone F, Grubel G, Dosch H 2009 Proc. Natl. Acad. Sci. USA 106 11511

    [33]

    Cicco A D, Trapananti A, Faggioni S 2003 Phys. Rev. Lett. 91 135505

    [34]

    Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E 2004 Phys. Rev. Lett. 92 145502

    [35]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [36]

    Lee G W, Gangopadhyay A K, Croat T K, Rathz T J, Hyers R W, Rogers J R, Kelton K F 2005 Phys. Rev. B 72 174107

    [37]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [38]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [41]

    Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J, Ho K M 2008 Phys. Rev. B 78 184204

    [42]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [43]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [44]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [45]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [46]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505

    [47]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [48]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [49]

    Zemp J, Celino M, Schonfeld B, Loffler J F 2014 Phys. Rev. B 90 144108

    [50]

    Wu Z W, Li F X, Huo C W, Li M Z, Wang W H, Liu K X 2016 Sci. Rep. 6 35967

    [51]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [52]

    Sha Z D, Wu R Q, Lu Y H, Shen L, Yang M, Cai Y Q, Feng Y P, Li Y 2009 J. Appl. Phys. 105 043521(R)

    [53]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [54]

    Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108

    [55]

    Senkov O N, Cheng Y Q, Miracle D B, Barney E R, Hannon A C, Woodward C F 2012 J. Appl. Phys. 111 123515

    [56]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [57]

    Leocmach M, Tanaka H 2012 Nature Commun. 3 974

    [58]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nature Commun. 6 8310

    [59]

    Ding J, Patinet S, Falk M L, Cheng Y Q, Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052

    [60]

    Li M Z, Wang C Z, Mendelev M I. Ho K M 2008 Phys. Rev. B 77 184202

    [61]

    Finney J L 1977 Nature 266 309

    [62]

    Borodin V A 1999 Phil. Mag. A 79 1887

    [63]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139

    [64]

    Lee J C, Park K W, Kim K H, Fleury E, Lee B J, Wakeda M, Shibutani Y 2007 J. Mater. Res. 22 3087

    [65]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

    [66]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter 25 165701

    [67]

    Royall C P, Williams S R, Ohtsuka T, Tanaka H 2008 Nature Mater. 7 556

    [68]

    Li J D, Cao Y X, Xia C J, Kou B Q, Xiao X H, Fezzaa K, Wang Y J 2014 Nat. Commun. 5 5014

    [69]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [70]

    Shintani H, Tanaka H 2006 Nat. Phys. 2 200

    [71]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [72]

    Lagogianni A E, Krausser J, Evenson Z, Samwer K, Zaccone A 2016 J. Stat. Mech.: Theor. Exp. 8 084001

    [73]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [74]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nature Commun. 6 7696

    [75]

    Tanaka H 2012 Eur. Phys. J. E 35 113

    [76]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2016 J. Appl. Phys. 119 205108

    [77]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [78]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [79]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [80]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [81]

    Spaepen F 1977 Acta Metall. 25 407

    [82]

    Widmer-Cooper A, Perry H, Harrowell P, Reichman D R 2008 Nature Phys. 4 711

    [83]

    Yang X N, Liu R, Yang M C, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛. 物理学报, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [4] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [5] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [6] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [9] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [10] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [11] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [13] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [14] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [15] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [17] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [18] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
计量
  • 文章访问数:  5414
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-09-05

/

返回文章
返回