搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律

糜晓磊 胡亮 武博文 龙强 魏炳波

引用本文:
Citation:

钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律

糜晓磊, 胡亮, 武博文, 龙强, 魏炳波

Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass

Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo
PDF
HTML
导出引用
  • 研究了Gd含量对(Fe73B22Nb5)100–xGdx (x = 0, 0.5, 1.0, 1.5, 2.0)合金非晶形成能力、热稳定性和磁学性能的影响规律, 并对比分析了非晶氧化机制. 通过添加Gd元素, 合金的原子尺寸差超过13%, 构型熵增大了30%, 提升了合金的非晶形成能力. 随着Gd含量的增大, 过冷液相区范围达到73 K, 热稳定性得到明显增强. Gd元素导致合金局部各向异性受到限制, 准位错偶极子型缺陷密度降低. 这有效减少了阻碍磁畴壁旋转的钉扎位点, 提高合金软磁性能. 此外, Gd元素使得非晶在氧化过程中对温度的变化更为敏感, 达到最大氧化速率的温度降低了15 K, 但是并未恶化其抗氧化性能. Gd原子受结合能影响向表层迁移, 形成的富Gd氧化物填充了表层缺陷, 占据了大量顶部空间, 合金表面附近的结构更加致密. 这种结构减少了氧原子通过微观组织界面进行扩散的通道, 有助于增强抗氧化性能.
    In this work, we use the rapid solidification technique to prepare five kinds of metallic glasses with different Gd content, and investigate in depth the influences of Gd content on the amorphous formation capability, thermal stability, and magnetic properties of (Fe73B22Nb5)100–xGdx (x = 0, 0.5, 1.0, 1.5, 2.0) alloys. By comparing the microstructural morphology and solute distribution of oxidation products before adding Gd and those after adding Gd, the amorphous oxidation mechanism is analyzed systematically. With the addition of Gd, the atomic size difference of the alloys exceeds 13%, and the configuration entropy increases from 7.27 kJ/(mol·K) to 9.44 kJ/(mol·K). The glass-forming ability of the alloy is significantly improved. The increase of Gd content can increase the glass transition temperature of the alloy to 864 K, and the undercooled liquid region can reach 73 K, significantly enhancing the thermal stability of the metallic glasses. The Gd limits the local anisotropy of the alloy and reduces the density of quasi-dislocation dipole defects. This can effectively reduce the pinning sites that hinder the rotation of magnetic domain walls, thereby improving the soft magnetic property. By comparing with the metallic glasses without Gd, only 2% (atomic percentage) Gd can reduce the coercivity by 8%. Moreover, the Gd makes the metallic glasses more sensitive to temperature variation in the oxidation process, and the temperature of the maximum oxidation rate is reduced by 15 K. However, their antioxidant performance does not deteriorate. The Gd atoms are influenced by binding energy and migrate to the surface, forming Gd-rich oxides. They fill surface defects and occupy a large part of the top space, leading to the structure becoming more compact near the surface. This structure reduces the channels for oxygen atoms to diffuse through the microstructure interface, which helps to improve antioxidant capability. This work provides a new approach for designing high performance Fe-based metallic glasses.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716301)、国家自然科学基金(批准号: 52088101)和陕西省自然科学基金(批准号: 2023JCJQ30)资助的课题.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716301), the National Natural Science Foundation of China (Grant No. 52088101), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2023JCJQ30).
    [1]

    Inoue A, Zhang T, Takeuchi A 1997 Appl. Phys. Lett. 71 464Google Scholar

    [2]

    Dou L T, Liu H S, Hou L, Xue L, Yang W M, Zhao Y C, Chang C T, Shen B L 2014 J. Magn. Magn. Mater. 358 23Google Scholar

    [3]

    Xu S, Wang J R, Wang N R, Wang T, Han Z H, Wang Y 2021 Mater. Today Commun. 26 101906Google Scholar

    [4]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044Google Scholar

    [5]

    Torrens-Serra J, Bruna P, Rodriguez-Viejo J, Roth S, Clavaguera-Mora M T 2010 Intermetallics 18 773Google Scholar

    [6]

    Suzuki K, Makino A, Inoue A, Masumoto T 1991 J. Appl. Phys. 70 6232Google Scholar

    [7]

    Shen B L, Akiba M, Inoue A 2006 Phys. Rev. B 73 104204Google Scholar

    [8]

    Ramasamy P, Stoica M, Bera S, Calin M, Eckert J 2017 J. Alloys Compd. 707 78Google Scholar

    [9]

    孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火 2023 物理学报 72 026101Google Scholar

    Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hou L, Li W H 2023 Acta Phys. Sin. 72 026101Google Scholar

    [10]

    Guo S F, Chen K C, Xie S H, Yu P, Huang Y J, Zhang H J 2013 J. Non Cryst. Solids 369 29Google Scholar

    [11]

    Tsai P H, Xiao A C, Li J B, Jang J S C, Chu J P, Huang J C 2014 J. Alloys Compd. 586 94Google Scholar

    [12]

    Wang S Y, Jiang W, Hu H D, Liu P F, Wu J L, Zhang B 2017 Prog. Nat. Sci. Mater. 27 503Google Scholar

    [13]

    Greer A L, Rutherford K L, Hutchings I M 2002 Int. Mater. Rev. 47 87Google Scholar

    [14]

    张雅楠, 王有骏, 孔令体, 李金富 2012 物理学报 61 157502Google Scholar

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502Google Scholar

    [15]

    孟绍怡, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 076101Google Scholar

    Meng S Y, Hao Q, Lyu G J, Qiao J C 2023 Acta Phys. Sin. 72 076101Google Scholar

    [16]

    Shen J, Chen Q, Sun J, Fan H, Wang G 2005 Appl. Phys. Lett. 86 151907Google Scholar

    [17]

    Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non Cryst. Solids 537 120020Google Scholar

    [18]

    Styles M J, Sun W W, East D R, Kimpton J A, Gibson M A, Hutchinson C R 2016 Acta Mater. 117 170Google Scholar

    [19]

    Park J M, Park J S, Na J H, Kim D H 2006 Mater. Sci. Eng. , A 435 425Google Scholar

    [20]

    Pan S P, Qin J Y, Gu T K 2010 J. Appl. Phys. 107 033503Google Scholar

    [21]

    Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar

    [22]

    Zhao L Z, Tian H C, Zhong X C, Liu Z W, Greneche J M, Ramanujan R V 2020 J. Rare Earth 38 1317Google Scholar

    [23]

    Chrobak A, Nosenko V, Haneczok G, Boichyshyn L, Kotur B, Bajorek A, Zivotsky O, Hendrych A 2011 Mater. Chem. Phys. 130 603Google Scholar

    [24]

    Li X M, Wang Y, Yi J, Kong L T, Li J F 2019 J. Alloys Compd. 790 626Google Scholar

    [25]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [26]

    Inoue A 1997 Proc. Jpn. Acad. 73 19Google Scholar

    [27]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [28]

    Dong Y, Wunderlich R, Biskupek J, Cao Q P, Wang X D, Zhang D X, Jiang J Z, Fecht H J 2017 Scripta Mater. 137 94Google Scholar

    [29]

    Huang X M, Chang C T, Chang Z Y, Wang X D, Cao Q P, Shen B L, Inoue A, Jiang J Z 2008 J. Alloys Compd. 460 708Google Scholar

    [30]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99Google Scholar

    [31]

    Yano K 2000 J. Magn. Magn. Mater. 208 207Google Scholar

    [32]

    Tao S, Ma T Y, Jian H, Ahmad Z, Tong H, Yan M 2010 Mater. Sci. Eng., A 528 161Google Scholar

    [33]

    Jian H, Luo W, Tao S, Yan M 2010 J. Alloys Compd. 505 315Google Scholar

    [34]

    Bitoh T, Makino A, Inoue A 2003 Mater. Trans. 44 2020Google Scholar

    [35]

    Guo W M, Wu Y P, Zhang J F, Yuan W H 2016 Surf. Coat. Technol. 307 392Google Scholar

    [36]

    Koster U, Jastrow L, Meuris M 2007 Mater. Sci. Eng., A 449 165Google Scholar

  • 图 1  四元Fe-B-Nb-Gd非晶合金的相分析 (a) XRD图谱; (b) Gd2合金的TEM明场像及选区电子衍射花样

    Fig. 1.  Phase analysis of quaternary Fe-B-Nb-Gd metallic glasses: (a) XRD patterns; (b) bright-field TEM image and SAED patterns of Gd2 alloy.

    图 2  不同Gd含量非晶Fe-B-Nb-Gd合金的DSC曲线 (a) 玻璃转变和结晶曲线; (b) 熔化曲线

    Fig. 2.  DSC curves of Fe-B-Nb-Gd metallic glasses with different Gd contents: (a) Glass transition and crystallization curves; (b) melting curves.

    图 3  非晶合金的微观结构及热力学参数 (a) 各组成原子基本参数; (b) 原子尺寸差; (c) 构型熵; (d) 混合焓

    Fig. 3.  Microstructure and thermodynamic parameters of metallic glasses: (a) Basic parameters of each constituent atom; (b) atomic size difference; (c) configuration entropy; (d) enthalpy of mixing.

    图 4  四元Fe-B-Nb-Gd非晶合金的磁学性能 (a) 磁滞回线; (b) 剩磁; (c) 矫顽力; (d) 饱和磁化强度

    Fig. 4.  Magnetic properties of quaternary Fe-B-Nb-Gd metallic glasses: (a) Hysteresis loop; (b) remanence; (c) coercivity; (d) saturated magnetization.

    图 5  非晶Fe-B-Nb-Gd合金氧化过程与温度的相关性 (a) 氧化增重曲线; (b) 氧化增重速率曲线

    Fig. 5.  Temperature dependence of oxidation process for Fe-B-Nb-Gd metallic glasses: (a) Mass gain curves; (b) mass gain rate curves.

    图 6  非晶Fe-B-Nb-Gd合金氧化产物的微观形貌与溶质分布 (a) Gd0; (b) Gd2

    Fig. 6.  Microstructure morphology and solute distribution of oxidation products for Fe-B-Nb-Gd metallic glasses: (a) Gd0; (b) Gd2.

    图 7  非晶Fe-B-Nb-Gd合金的氧化机制 (a), (b) 合金原子扩散和氧化物结构模型; (c), (d) 氧元素扩散模型

    Fig. 7.  Oxidation mechanism of Fe-B-Nb-Gd metallic glasses: (a), (b) Atomic diffusion and oxide structure models; (c), (d) oxygen diffusion models.

    表 1  (Fe73B22Nb5)100–xGdx (x = 0, 0.5, 1.0, 1.5, 2.0)非晶合金的热物性参数

    Table 1.  Thermophysical parameters of (Fe73B22Nb5)100–xGdx (x = 0, 0.5, 1.0, 1.5, 2.0) metallic glasses.

    Alloy Tg/K Tx/K Tp/K TS/K TL/K ∆T/K Trg γ
    Gd0 811 855 862 1409 1529 44 0.576 0.365
    Gd0.5 826 875 885 1364 1521 49 0.606 0.377
    Gd1 838 897 908 1362 1528 59 0.615 0.384
    Gd1.5 863 933 941 1359 1504 70 0.635 0.398
    Gd2 864 937 943 1357 1494 73 0.637 0.400
    下载: 导出CSV
  • [1]

    Inoue A, Zhang T, Takeuchi A 1997 Appl. Phys. Lett. 71 464Google Scholar

    [2]

    Dou L T, Liu H S, Hou L, Xue L, Yang W M, Zhao Y C, Chang C T, Shen B L 2014 J. Magn. Magn. Mater. 358 23Google Scholar

    [3]

    Xu S, Wang J R, Wang N R, Wang T, Han Z H, Wang Y 2021 Mater. Today Commun. 26 101906Google Scholar

    [4]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044Google Scholar

    [5]

    Torrens-Serra J, Bruna P, Rodriguez-Viejo J, Roth S, Clavaguera-Mora M T 2010 Intermetallics 18 773Google Scholar

    [6]

    Suzuki K, Makino A, Inoue A, Masumoto T 1991 J. Appl. Phys. 70 6232Google Scholar

    [7]

    Shen B L, Akiba M, Inoue A 2006 Phys. Rev. B 73 104204Google Scholar

    [8]

    Ramasamy P, Stoica M, Bera S, Calin M, Eckert J 2017 J. Alloys Compd. 707 78Google Scholar

    [9]

    孙吉, 沈鹏飞, 尚其忠, 张鹏雁, 刘莉, 李明瑞, 侯龙, 李维火 2023 物理学报 72 026101Google Scholar

    Sun J, Shen P F, Shang Q Z, Zhang P Y, Liu L, Li M R, Hou L, Li W H 2023 Acta Phys. Sin. 72 026101Google Scholar

    [10]

    Guo S F, Chen K C, Xie S H, Yu P, Huang Y J, Zhang H J 2013 J. Non Cryst. Solids 369 29Google Scholar

    [11]

    Tsai P H, Xiao A C, Li J B, Jang J S C, Chu J P, Huang J C 2014 J. Alloys Compd. 586 94Google Scholar

    [12]

    Wang S Y, Jiang W, Hu H D, Liu P F, Wu J L, Zhang B 2017 Prog. Nat. Sci. Mater. 27 503Google Scholar

    [13]

    Greer A L, Rutherford K L, Hutchings I M 2002 Int. Mater. Rev. 47 87Google Scholar

    [14]

    张雅楠, 王有骏, 孔令体, 李金富 2012 物理学报 61 157502Google Scholar

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502Google Scholar

    [15]

    孟绍怡, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 076101Google Scholar

    Meng S Y, Hao Q, Lyu G J, Qiao J C 2023 Acta Phys. Sin. 72 076101Google Scholar

    [16]

    Shen J, Chen Q, Sun J, Fan H, Wang G 2005 Appl. Phys. Lett. 86 151907Google Scholar

    [17]

    Zhao Y B, Bai Y W, Ding Y J, Hu L N 2020 J. Non Cryst. Solids 537 120020Google Scholar

    [18]

    Styles M J, Sun W W, East D R, Kimpton J A, Gibson M A, Hutchinson C R 2016 Acta Mater. 117 170Google Scholar

    [19]

    Park J M, Park J S, Na J H, Kim D H 2006 Mater. Sci. Eng. , A 435 425Google Scholar

    [20]

    Pan S P, Qin J Y, Gu T K 2010 J. Appl. Phys. 107 033503Google Scholar

    [21]

    Liang X Y, Li Y H, Bao F, Zhu Z W, Zhang H F, Zhang W 2021 Intermetallics 132 107135Google Scholar

    [22]

    Zhao L Z, Tian H C, Zhong X C, Liu Z W, Greneche J M, Ramanujan R V 2020 J. Rare Earth 38 1317Google Scholar

    [23]

    Chrobak A, Nosenko V, Haneczok G, Boichyshyn L, Kotur B, Bajorek A, Zivotsky O, Hendrych A 2011 Mater. Chem. Phys. 130 603Google Scholar

    [24]

    Li X M, Wang Y, Yi J, Kong L T, Li J F 2019 J. Alloys Compd. 790 626Google Scholar

    [25]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [26]

    Inoue A 1997 Proc. Jpn. Acad. 73 19Google Scholar

    [27]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [28]

    Dong Y, Wunderlich R, Biskupek J, Cao Q P, Wang X D, Zhang D X, Jiang J Z, Fecht H J 2017 Scripta Mater. 137 94Google Scholar

    [29]

    Huang X M, Chang C T, Chang Z Y, Wang X D, Cao Q P, Shen B L, Inoue A, Jiang J Z 2008 J. Alloys Compd. 460 708Google Scholar

    [30]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99Google Scholar

    [31]

    Yano K 2000 J. Magn. Magn. Mater. 208 207Google Scholar

    [32]

    Tao S, Ma T Y, Jian H, Ahmad Z, Tong H, Yan M 2010 Mater. Sci. Eng., A 528 161Google Scholar

    [33]

    Jian H, Luo W, Tao S, Yan M 2010 J. Alloys Compd. 505 315Google Scholar

    [34]

    Bitoh T, Makino A, Inoue A 2003 Mater. Trans. 44 2020Google Scholar

    [35]

    Guo W M, Wu Y P, Zhang J F, Yuan W H 2016 Surf. Coat. Technol. 307 392Google Scholar

    [36]

    Koster U, Jastrow L, Meuris M 2007 Mater. Sci. Eng., A 449 165Google Scholar

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [2] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [3] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [4] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [5] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [6] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [7] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [8] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [9] 曹永青, 林鑫, 汪志太, 王理林, 黄卫东. 液氮冷却条件下激光快速熔凝Ni-28 wt%Sn合金组织演变. 物理学报, 2015, 64(10): 108103. doi: 10.7498/aps.64.108103
    [10] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [11] 边文花, 代富平, 王伟丽, 赵宇龙. 急冷条件下NiAl-Mo三元共晶合金的组织形成机制. 物理学报, 2013, 62(4): 048102. doi: 10.7498/aps.62.048102
    [12] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律. 物理学报, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [13] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [14] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [15] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [16] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [17] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [18] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  582
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-02-14
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回