搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响

任县利 张伟伟 伍晓勇 吴璐 王月霞

引用本文:
Citation:

高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响

任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞

Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties

Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia
PDF
HTML
导出引用
  • 如何有效预测高熵合金的稳态结构, 是开展研究其物理及化学等性能的基础. 以FeCuCrMnMo合金为例, 在有限晶胞尺寸内, 采用蒙特卡洛结合密度泛函理论杂化计算方法(Monte Carlo/density functional theory, MC/DFT)预测高熵合金的平衡态结构. 与准随机近似方法(special quasirandom structures, SQS)不同, 该方法不再追求高熵合金结构的理想随机状态, 而是充分考虑合金中原子尺寸、混合焓、原子间相互作用等物理因素. 通过第一性原理计算体系能量来实现, 使得蒙特卡洛(Monte Carlo, MC)方法保证结构在原子交换过程中体系能量逐渐收敛于平衡态. 最终预测得到的平衡态结构出现Cu原子的短程有序现象(short range order, SRO)与实验上合金中的Cu偏析现象相一致. 相较于由SQS方法获得的随机状态, 该SRO结构在能量上更加稳定. 同时本文对稳态结构通过序参数及径向分布函数进行表征, 并对SRO现象的出现进行物理解释, 进一步揭示了SRO的出现对高熵合金结构性质的影响.
    The prediction of stable state of high-entropy alloys (HEAs) is crucial to obtain fundamental insight to the excellent properties of HEAs. Taking a FeCuCrMnMo alloy as a case study, we combined Monte Carlo (MC) method with the density functional thoery (DFT) calculations (MC/DFT) to predict the equilibrium structure of high-entropy alloys in a finite unit cell. Instead of approaching the ideal random state obtained from special quasi-random approximation (SQS) method, physical factors such as atomic size, mixing enthalpy of atomic pairs, and interatomic interactions in the alloy are fully considered and implemented in our simulation by MC/DFT calculations. MC codes ensure the energy convergence of the system to the equilibrium state through the atom exchange process. The equilibrium structures exhibit Cu-rich short-range orders (SRO), which is consistent with the observation in experiments. Comparing with ideal random state structure, SRO structure is more stable in energy, and more closely packed in atomic arrangement. Moreover, the analyses of order parameters and radial distribution functions (RDFs) are performed to character the structure of high-entropy alloy. The order parameter of Cu-Cu atomic pair reaches to –0.53 in the SRO equilibrium structure, which indicates that Cu-rich regions appear in the alloy. The RDFs show that the atomic distance distribution of the SRO structure is between 2.25 Å to 2.7 Å, which is smaller than the range of 2.16 Å to 2.84 Å in the SQS structure, indicating that the lattice distortions is relatively small in the SRO structure after structural optimization. The appearing of SRO phenomena is attributed to the inherent characteristics of atoms, including (i) atomic size, (ii) interatomic mixing enthalpy and (iii) the interaction of atoms. Atomic sizes in the FeCuCrMnMo alloy are in the order of Fe (11.78) < Cu (11.81) < Cr (11.97) < Mn (14.38) < Mo (15.58), in unit of Å3/atom. The relatively large sizes of Mn and Mo atoms should disadvantage the pairing of Mo-Mo and Mn-Mn. The mixing enthalpy of Cu with other atoms are all positive values, indicating that Cu is not favor of pairing other elements and precipitate itself. The analyses of density of state (DOS) and Crystal Orbital Hamilton Population (COHP) also support the results. The reason is exactly attributed to the inactive valence electrons of Cu. Furthermore, the effect of SRO on the magnetic and mechanical properties are investigated. The existence of SRO decreases the mean value of magnetic moment, and results in an increase of elastic moduli (B, G and E) and a decrease in the ductility and anisotropy properties.
      通信作者: 王月霞, yxwang@fudan.edu.cn
    • 基金项目: 国家级-国家自然科学基金(117750501)
      Corresponding author: Wang Yue-Xia, yxwang@fudan.edu.cn
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China. Mater. 61 2Google Scholar

    [3]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 213 375

    [4]

    Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J, Zhang Y 2016 Phys. Rev. Lett. 116 135504Google Scholar

    [5]

    Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He M R, Robertson I M, Weber W J, Wang L 2016 Nat. Commun. 7 13564Google Scholar

    [6]

    Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J 2016 Acta Mater. 113 230Google Scholar

    [7]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [8]

    Tian F 2017 Front. Mater. 4Google Scholar

    [9]

    Soven P 1967 Phys. Rev. 156 809Google Scholar

    [10]

    Abrikosov I A, Simak S I, Johansson B, Ruban A V, Skriver H L 1997 Phys. Rev. B 56 9319Google Scholar

    [11]

    Zunger A, Wei S, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [12]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [13]

    Shang S L, Wang Y, Kim D E, Zacherl C L, Du Y, Liu Z K 2011 Phys. Rev. B 83 144204Google Scholar

    [14]

    Pickering E J, Muñoz-Moreno R, Stone H J, Jones N G 2016 Scripta Mater. 113 106Google Scholar

    [15]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964Google Scholar

    [16]

    Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J 2011 Acta Mater. 59 182Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [18]

    Feng W Q, Qi Y, Wang S Q 2017 Metals 7 482Google Scholar

    [19]

    Niu C, Windl W, Ghazisaeidi M 2017 Scripta Mater. 132 9Google Scholar

    [20]

    Ren X L, Shi P H, Zhang W W, Wu X Y, Xu Q, Wang Y X 2019 Acta Mater. 180 189Google Scholar

    [21]

    Cowley J M 1950 Phys. Rev. 77 669Google Scholar

    [22]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102Google Scholar

    [23]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Oxford: Reed Educational and Publishing Ltd.) pp129−136

    [24]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [25]

    Richard D 1993 J. Phys. Chem. 97 8617Google Scholar

    [26]

    姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈浩, 王月霞 2016 物理学报 65 026202Google Scholar

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202Google Scholar

    [27]

    Ding Y C, Chen M, Gao X Y, Jiang M H 2012 Chin. Phys. B 21 067101Google Scholar

    [28]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [29]

    Ding Y, Chen M, Wu W 2014 Phys. B: Condens. Matter 433 48Google Scholar

    [30]

    王浩玉, 农智学, 王继杰, 朱景川 2019 物理学报 68 136401

    Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 136401

    [31]

    Miao N, Sa B, Zhou J, Sun Z 2011 Comput. Mater. Sci. 50 1559Google Scholar

    [32]

    Gueler E, Gueler M 2015 Chin. J. Phys. 53 040807

  • 图 1  温度分别在800, 1000, 1200和1500 K下, FeCuCrMnMo合金结构总能和有序参数随MC步数的演化 (a), (c), (e)和(g)为MC步数-结构总能关系, (b), (d), (f)和(h)为MC步数-有序参数关系图

    Fig. 1.  System evolution vs MC steps at 800, 1000, 1200 and 1500 K. (a), (c), (e) and (g) System energy; (b), (d), (f), and (h) SRO parameters for atomic pairs.

    图 2  FeCuCrMnMo合金平衡态晶格结构, 其中Cu原子(蓝色原子球)的SRO现象用黑色虚线框标出

    Fig. 2.  The lattice structure of FeCuCrMnMo alloy, in which Cu-rich short range order (SRO) is framed by a dotted box. Blue spheres represent Cu atoms.

    图 3  FeCuCrMnMo合金773 K下退火1 h后的STEM-EDS微观组织图片[7]

    Fig. 3.  STEM-EDS maps of the FeCuCrMnMo alloys at 773 K for 1 h[7].

    图 4  FeCuCrMnMo合金的6个SQS结构 (a)有序参数; (b)结构总能(单个原子)

    Fig. 4.  Six SQS structures of FeCuCrMnMo alloy: (a) Order parameters of each atomic pairs; (b) total energy per atom.

    图 5  高熵合金理想BBC结构, 结构优化后的SRO结构和SQS结构的径向分布函数计算结果

    Fig. 5.  Average radial distribution functions for BCC structure (unrelaxed), SRO structure (relaxed) and SQS structure (relaxed) of FeCuCrMnMo alloy.

    图 6  高熵合金结构优化后原子对间径向分布函数图 (a), (b) SQS结构; (c), (d) SRO结构. 虚线标明无畸变晶格中第一近邻(1NN)和第二近邻(2NN)的距离值

    Fig. 6.  Partial pair distribution functions of FeCuCrMnMo alloy: (a), (b) SQS structure; (c), (d) SRO structure. Dotted lines show the distances of first nearest neighbor (1NN) and second nearest neighbor in unrelaxed lattice.

    图 7  FeCuCrMnMo合金中原子的电子(自旋向上)分波态密度, 虚线处代表费米能级

    Fig. 7.  Partial density of states of FeCuCrMnMo alloy (spin-up). Dotted line shows the Fermi level.

    图 8  FeCuCrMnMo合金中Fe-Mo, Cu-Mo, Cr-Mo和Mn-Mo原子对间的COHP分析

    Fig. 8.  COHP for FeCuCrMnMo alloy describing Fe-Mo, Cu-Mo, Cr-Mo and Mn-Mo interactions.

    图 9  FeCuCrMnMo合金SRO结构和SQS结构电子态密度

    Fig. 9.  Density of state of FeCuCrMnMo alloy in SRO lattice and SQS lattice.

    图 10  FeCuCrMnMo合金和纯金属W的{100}方向电荷密度图 (a) SRO结构; (b)SQS结构, 其中蓝色区域附近的“圆形状原子”为Cu原子; (c)纯金属W

    Fig. 10.  Electron density of {100} atomic plane: (a) SRO structure; (b) SQS structure; (c) W lattice.

    图 11  FeCuCrMnMo合金SRO和SQS结构中各原子的磁矩

    Fig. 11.  Magnetic moments of individual atoms in SRO structure and SQS structure of FeCuCrMnMo alloy.

    表 1  FeCuCrMnMo合金的SRO结构、SQS结构及相关纯金属的平均单个原子能、平均单个原子体积和晶格常数值. 其中FM, NM和AFM分别代表铁磁性、顺磁性和反铁磁性

    Table 1.  Cohesive energy per atom, structural volume per atom, and lattice parameters for SRO and SQS structures, and Fe, Cu, Cr, Mn, Mo, and W metals. FM, AFM, and NM denote ferromagnetism, antiferromagnetism, and nonmagnetic, respectively.

    金属磁性晶格内聚能/eV体积/Å3晶格常数
    a (理论值)a0 (实验值)
    HEA-SROFMBCC–8.1312.152.8962.878[7]
    NMBCC–8.1212.052.889
    FMFCC–8.0812.313.666
    HEA-SQSFMBCC–8.0912.532.926
    FeFMBCC–8.3211.782.8322.834[22]
    CuNMFCC–3.7211.813.6363.615[23]
    CrAFMBCC–9.5111.972.8352.882[23]
    MnFMBCC–8.2914.383.0803.080[23]
    MoNMBCC–10.9515.583.1483.147[23]
    下载: 导出CSV

    表 2  FeCuCrMnMo合金中不同原子对间的混合焓[24] (单位: KJ/mol)

    Table 2.  Enthalpy of mixing of binary systems containing the elements in FeCuCrMnMo alloy(Unit: KJ/mol).

    混合焓CrMnMoFe
    Cu1241913
    Cr20–1
    Mn50
    Mo–2
    下载: 导出CSV

    表 3  FeCuCrMnMo合金中不同原子对的ICOHP平均值

    Table 3.  Mean values of ICOHPs for each atomic pair in FeCuCrMnMo alloy.

    原子对Cu-FeCu-MnCu-MoCu-CrCu-Cu
    ICOHP–0.54–0.59–0.88–0.66–0.39
    原子对Fe-CrFe-MoMn-MoCr-MoCr-Mn
    ICOHP–1.45–1.68–1.72–1.78–1.61
    下载: 导出CSV

    表 4  FeCuCrMnMo合金SRO结构和SQS结构的力学性质, 其中弹性模量的单位为GPa

    Table 4.  Calculated mechanical properties for SRO structure and SQS structure of FeCuCrMnMo alloy. The unit for the elastic moduli is GPa.

    结构C11C12C44BBEOSGEνG/BAZ
    SRO263.4187.5100.5212.8188.788.2232.50.3182.4152.65
    SQS156.1139.385.1144.9154.443.4118.40.3643.32310.1
    下载: 导出CSV
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China. Mater. 61 2Google Scholar

    [3]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 213 375

    [4]

    Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J, Zhang Y 2016 Phys. Rev. Lett. 116 135504Google Scholar

    [5]

    Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He M R, Robertson I M, Weber W J, Wang L 2016 Nat. Commun. 7 13564Google Scholar

    [6]

    Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J 2016 Acta Mater. 113 230Google Scholar

    [7]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [8]

    Tian F 2017 Front. Mater. 4Google Scholar

    [9]

    Soven P 1967 Phys. Rev. 156 809Google Scholar

    [10]

    Abrikosov I A, Simak S I, Johansson B, Ruban A V, Skriver H L 1997 Phys. Rev. B 56 9319Google Scholar

    [11]

    Zunger A, Wei S, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [12]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [13]

    Shang S L, Wang Y, Kim D E, Zacherl C L, Du Y, Liu Z K 2011 Phys. Rev. B 83 144204Google Scholar

    [14]

    Pickering E J, Muñoz-Moreno R, Stone H J, Jones N G 2016 Scripta Mater. 113 106Google Scholar

    [15]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964Google Scholar

    [16]

    Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J 2011 Acta Mater. 59 182Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [18]

    Feng W Q, Qi Y, Wang S Q 2017 Metals 7 482Google Scholar

    [19]

    Niu C, Windl W, Ghazisaeidi M 2017 Scripta Mater. 132 9Google Scholar

    [20]

    Ren X L, Shi P H, Zhang W W, Wu X Y, Xu Q, Wang Y X 2019 Acta Mater. 180 189Google Scholar

    [21]

    Cowley J M 1950 Phys. Rev. 77 669Google Scholar

    [22]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102Google Scholar

    [23]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Oxford: Reed Educational and Publishing Ltd.) pp129−136

    [24]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [25]

    Richard D 1993 J. Phys. Chem. 97 8617Google Scholar

    [26]

    姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈浩, 王月霞 2016 物理学报 65 026202Google Scholar

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202Google Scholar

    [27]

    Ding Y C, Chen M, Gao X Y, Jiang M H 2012 Chin. Phys. B 21 067101Google Scholar

    [28]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [29]

    Ding Y, Chen M, Wu W 2014 Phys. B: Condens. Matter 433 48Google Scholar

    [30]

    王浩玉, 农智学, 王继杰, 朱景川 2019 物理学报 68 136401

    Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 136401

    [31]

    Miao N, Sa B, Zhou J, Sun Z 2011 Comput. Mater. Sci. 50 1559Google Scholar

    [32]

    Gueler E, Gueler M 2015 Chin. J. Phys. 53 040807

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 物理学报, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [7] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [8] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [9] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [10] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [11] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [12] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究. 物理学报, 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [17] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [18] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [19] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  15470
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2019-12-04
  • 刊出日期:  2020-02-20

/

返回文章
返回