搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响

戚忠乙 王博 江鸿翔 张丽丽 何杰

引用本文:
Citation:

微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响

戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰

Effect of trace rare earth La on microstructure and properties of Al-7%Si-0.6%Fe alloy

Qi Zhong-Yi, Wang Bo, Jiang Hong-Xiang, Zhang Li-Li, He Jie
PDF
HTML
导出引用
  • 在Al(铝)-Si(硅)合金中同时添加Sr(锶)和B(硼)存在“中毒”现象, 无法同时细化α-Al晶粒和变质共晶Si. 本文研究了在同时添加α-Al晶粒细化剂B和共晶Si变质剂Sr的条件下, 微量稀土La(镧)对Al-7%Si-0.6%Fe合金组织、热导率和力学性能的影响, 分析了稀土La的影响规律及其作用机理. 结果表明微量稀土La的添加, 一方面可以中和Sr与B的毒化效应, 提升共晶Si的变质效果; 另一方面可以促使α-Al异质形核基底LaB6的形成, 并作为表面活性剂降低α-Al的形核过冷度, 从而细化α-Al晶粒. 共晶Si的变质以及α-Al晶粒的细化有助于同时提升Al-7%Si-0.6%Fe合金的热导率及力学性能. 此外, 当稀土La的添加量在0.02%—0.06%之间时, 合金的导热性能明显提升; 随着La添加量的进一步增大, 合金热导率下降.
    Al-Si alloys have been widely used in electronic information, communication, and other fields because of their high specific strength, excellent castability and good thermal conductivity. In recent years, with the rapid development of 5G communication technology, electronic communication equipment is gradually developing towards high integration and lightweight. The power of related equipment is higher and higher, which puts forward higher requirements for thermal conductivity and mechanical properties of materials.Si can improve the fluidity and strength of the Al-Si alloy, but a large amount of Si will aggravate the lattice distortion and increases amount of eutectic Si. This will reduce the plasticity of the alloy, increase the electron scattering and reduce the thermal conductivity. In order to improve the mechanical properties and thermal conductivity of Al-Si alloys, chemical inoculation is generally used. Sr is usually used as modifier and Al-B serves as grain refiner. However, the simultaneous addition of Sr and B into Al-Si alloy results in “poisoning” phenomenon, it becomes impossible to refine α-Al grains and modify eutectic Si simultaneously.In recent years, rare earth La has attracted more and more attention in improving the properties of aluminum alloys. However, previous studies mainly focused on the effects of La addition, consequently, the research on the effects of combined addition of La, Sr, B on the microstructure and properties of Al-7%Si-0.6%Fe alloy is lacking. In this work, solidification experiments are performed to investigate the effects of combined addition of La, Sr, B on the microstructure and properties of Al-7%Si-0.6%Fe alloy. The results show that the addition of trace rare earth La can effectively eliminate the poisoning effect of Sr and B, and enhance the modification effect of eutectic Si. Besides, the addition of La can promote the formation of α-Al heterogeneous nucleation substrate LaB6 and La can be used as a surfactant to reduce the undercooling of α-Al nucleation, thus it refines α-Al grains. The thermal conductivity of the alloy is significantly improved when the addition of La ranges from 0.02% to 0.06%; with the further increase of La addition, LaAlSi intermetallic compounds are formed in the alloy, leading the thermal conductivity of the alloy to decrease.
      通信作者: 江鸿翔, hxjiang@imr.ac.cn ; 何杰, jiehe@imr.ac.cn
    • 基金项目: 广西科技重大专项(批准号: AA23023032)、国家自然科学基金(批准号: 52174380, 51974288)、中国载人航天工程空间应用系统项目(批准号: KJZ-YY-NCL06)和福建省科技计划(批准号: 2021T3030, 2020T3037)资助的课题.
      Corresponding author: Jiang Hong-Xiang, hxjiang@imr.ac.cn ; He Jie, jiehe@imr.ac.cn
    • Funds: Project supported by the Science and Technology Major Project of Guangxi Province, China (Grant No.AA23023032), the National Natural Science Foundation of China (Grant Nos. 52174380, 51974288), the Space Utilization System of China Manned Space Engineering (Grant No. KJZ-YY-NCL06), and the Science and Technology Project of Fujian Province, China (Grant Nos. 2021T3030, 2020T3037).
    [1]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [2]

    Dursun T, Soutis C 2014 Mater. Des. 55 862Google Scholar

    [3]

    Kim Y M, Choi S W, KimY C 2023 J. Therm. Anal. Calorim. 140 10749Google Scholar

    [4]

    Chen Z N, Kang H J, Fan G H, Li J H, Jie J C 2016 Acta Mater. 120 168Google Scholar

    [5]

    宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣 2021 物理学报 70 086402Google Scholar

    Song Y, Jiang H X, Zhao J Z, He J, Zhang L L, Li S X 2021 Acta Phys. Sin. 70 086402Google Scholar

    [6]

    Bolzoni L, Xia M X, Babu N H 2016 Sci. Rep. 6 39554Google Scholar

    [7]

    Ferrarini C F, Bolfarini C, Kiminami C S, Botta W J 2004 Mater. Sci. Eng. A 375 577Google Scholar

    [8]

    Dang B, Zhang X, Chen Y Z, Chen C X, Wang H T, Liu F 2016 Sci. Rep. 6 30874Google Scholar

    [9]

    Wang J Y, Wang B J, Huang L F 2017 Mater. Sci. Technol. 33 1235Google Scholar

    [10]

    王宝剑, 王建元, 吴文华, 翟薇, 王旭, 靳占奎, 魏炳波 2023 中国科学:技术科学 53 353

    Wang B J, Wang J Y, Wu W H, Zhai W, Wang X, Jin Z K, Wei B B 2023 Sci. China Technol. Sci. 53 353

    [11]

    Banerjee K, Chatterjee U K 2000 Mater. J. Mater. Sci. Technol. 16 517Google Scholar

    [12]

    Timelli G, Caliari D, Rakhmonov J 2016 J. Mater. Sci. Technol. 32 515Google Scholar

    [13]

    Birol Y 2012 Mater. Sci. Technol. 28 363Google Scholar

    [14]

    Barrirero J, Engstler M, Ghafoor N 2014 J. Alloys Compd. 611 410Google Scholar

    [15]

    Chen J K, Hung H Y, Wang C F, Tang N K 2017 Int. J. Heat Mass Transf. 105 189Google Scholar

    [16]

    Li J H, Wang X D, Ludwig T H, Tsunekawa Y, Arnberg L, Jiang J Z 2015 Acta Mater. 84 153Google Scholar

    [17]

    Jiang H X, Li S X, Zheng Q J, Zhang L L, He J, Song Y, Deng C K, Zhao J Z 2020 Mater. Des. 195 108991Google Scholar

    [18]

    Zheng Q J, Jiang H X, He J, Zhang L L, Zhao J Z 2021 Sci. China Technol. Sci. 64 2012Google Scholar

    [19]

    Jiang H X, Zheng Q J, Song Y, Li Y Q, Li S X, He J, Zhang L L, Zhao J Z 2022 Mater Charact. 185 111750Google Scholar

    [20]

    Chen Y, Pan Y, Lu T, Tao S W, Wu J L 2014 Mater. Des. 64 432Google Scholar

    [21]

    郑秋菊, 叶中飞, 江鸿翔, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Mater. Sin. 57 103

    [22]

    Heo U, Han D W, Kim S, Mo C B 2022 Mater. Today Commun. 32 104005Google Scholar

    [23]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [24]

    Huang L, Gunther E, Doetsch C, Mehling H 2010 Thermochim. Acta 509 93Google Scholar

    [25]

    Birol Y 2012 Mater. Sci. Technol. 28 70Google Scholar

    [26]

    Cui X L, Wu Y Y, Gao T, Liu X F 2014 J. Alloys Compd. 615 906Google Scholar

    [27]

    Lu T, Pan Y, Wu J L, Tao S W, Chen Y 2015 Int. J. Min. Met. Mater. 22 405Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Lu S Z, Hellawell A 1987 Metall. Trans. 18A 1721

    [30]

    Li C L, Pan Y, Lu T, Jing L J, Pi J H 2018 Met. Mater. Int. 24 1133Google Scholar

    [31]

    Luo Q, Li X L, Li Q 2023 J. Mater. Sci. Technol. 135 97Google Scholar

    [32]

    Zhang M X, Kelly P M 2005 Scr. Mater. 52 963Google Scholar

    [33]

    Jing L J, Pan Y, Lu T, Pi J H, Gu T F 2018 T. Nonferr. Metal. Soc. 28 1687Google Scholar

    [34]

    Easton M A, StJohn D H 2001 130th TMS Annual Meeting New Orleans, La, February 11–15, 2000 p927

    [35]

    Zhou S H, Napolitano R E 2006 Acta Mater. 54 831Google Scholar

    [36]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [37]

    Li S B, Du W B, Wang X D 2018 Acta Metall. Sin. 54 911Google Scholar

    [38]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [39]

    Mayadas A F, Shatzkes M 1970 Phys.Rev.B. 1 1382Google Scholar

    [40]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX, March 10–12, 2019 p193

    [41]

    Sauvage X, Bobruk E V, Murashkin M Y 2015 Acta Mater. 98 355Google Scholar

    [42]

    Ma S M, Wang X M 2019 Mater. Sci. Eng. A 754 46Google Scholar

  • 图 1  不同Sr, B, La添加量的Al-7%Si-0.6%Fe合金中共晶硅的SEM图像 (a) 0; (b) 0.024% B; (c) 0.02% Sr; (d) 0.02% Sr和0.024% B; (e) 0.02% Sr, 0.024% B和0.02% La; (f) 0.02% Sr, 0.024% B和0.1% La

    Fig. 1.  SEM images of eutectic Si in the Al-7%Si-0.6%Fe alloys with different Sr, B and La addition: (a) 0; (b) 0.024% B; (c) 0.02% Sr; (d) 0.02% Sr and 0.024% B; (e) 0.02% Sr, 0.024% B and 0.02% La; (f) 0.02% Sr, 0.024% B and 0.1% La.

    图 2  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe

    Fig. 2.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe.

    图 4  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.1%La合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Fig. 4.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.1%La alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 3  Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.02%La合金的SEI和EDS元素分布 (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Fig. 3.  SEI and EDS element distribution of Al-7%Si-0.6%Fe-0.024%B-0.02%Sr-0.02%La alloy: (a) SEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 5  添加0.1%La的Al-7%Si-0.6%Fe合金的反向散射电子图像(BEI)及EPMA元素面分布 (a) BEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La

    Fig. 5.  Backscattered electron image (BEI) and EPMA mappings of the Al-7%Si-0.6%Fe alloy with 0.1%La addition: (a) BEI; (b) Al; (c) Si; (d) Sr; (e) Fe; (f) La.

    图 6  不同Sr, B, La添加量的Al-7%Si-0.6%Fe合金的OM图像 (a) 0; (b) 0.02% Sr; (c) 0.024% B; (d) 0.02% Sr和0.024% B; (e) 0.02% Sr, 0.024% B和0.02% La; (f) 0.02% Sr, 0.024% B和0.04% La; (g) 0.02% Sr, 0.024% B和0.06% La; (h) 0.02% Sr, 0.024% B和0.08% La; (i) 0.02% Sr, 0.024% B和0.10% La

    Fig. 6.  OM images of Al-7%Si-0.6%Fe alloys with different Sr, B, La addition: (a) 0; (b) 0.02% Sr; (c) 0.024% B; (d) 0.02% Sr and 0.024% B; (e) 0.02% Sr, 0.024% B and 0.02% La; (f) 0.02% Sr, 0.024% B and 0.04% La; (g) 0.02% Sr, 0.024% B and 0.06% La; (h) 0.02% Sr, 0.024% B and 0.08% La; (i) 0.02% Sr, 0.024% B and 0.10% La.

    图 7  Al-7%Si-0.6%Fe合金平均晶粒尺寸随La添加量的变化

    Fig. 7.  Average grain size of Al-7%Si-0.6%Fe alloys with different addition of La.

    图 8  不同La添加量的Al-7%Si-0.6%Fe合金的DTA冷却曲线

    Fig. 8.  Differential thermal analysis (DTA) cooling curves for the Al-7%Si-0.6%Fe alloys with different addition of La.

    图 9  不同La添加量的Al-7%Si-0.6%Fe合金的热导率

    Fig. 9.  Thermal conductivities of Al-7%Si-0.6%Fe alloys with different addition of La.

    图 10  不同La添加量的Al-7%Si-0.6%Fe合金的室温拉伸性能

    Fig. 10.  Tensile properties of Al-7%Si-0.6%Fe alloys with different addition of La at room temperature.

    图 11  Al, SrB6和LaB6相的晶体结构示意图

    Fig. 11.  Schematic diagram of crystal structure of Al, SrB6 and LaB6 phases.

    图 12  添加不同含量La时α-Al相在高角度区间的XRD图谱

    Fig. 12.  XRD spectra of α-Al phase in an elevation-angle zone with different addition of La.

    图 13  添加La前后Al-7%Si-0.6%Fe-0.02Sr-0.024B合金的拉伸断口形貌 (a) 未添加La; (b) 添加0.02% La

    Fig. 13.  Tensile fracture morphology of Al-7%Si-0.6%Fe alloys before and after addition of La: (a) Without La; (b) add 0.02% La.

    表 1  实验合金的化学成分(%)

    Table 1.  Chemical compositions of alloys (%).

    AlloyBSrLaSiFeAl
    Untreated00070.6余量
    0.024%B0.0240070.6余量
    0.02%Sr00.02070.6余量
    0.02%Sr+0.024%B0.0240.02070.6余量
    0.02%La0.0240.020.0270.6余量
    0.04%La0.0240.020.0470.6余量
    0.06%La0.0240.020.0670.6余量
    0.08%La0.0240.020.0870.6余量
    0.10%La0.0240.020.1070.6余量
    下载: 导出CSV

    表 2  Al-7%Si-0.6%Fe合金中α-Al、共晶Si的形核温度TN和过冷度ΔT

    Table 2.  Change of the nucleation temperature and the nucleation undercooling for the α-Al and the eutectic Si with different La addition.

    AlloyTN(α-Al)/KΔT(α-Al)/KTN(Si)/KΔT(Si)/K
    Untreated883.16846.01.1
    0.00%La883.13844.03.1
    0.04%La884.21.9843.83.3
    0.10%La885.20.9843.83.3
    下载: 导出CSV

    表 3  不同组元间的混合焓变[28]

    Table 3.  Enthalpy of mixing between various elements[28].

    ElementB-SrB-LaB-TiB-VB-Cr
    Enthalpy/
    (kJ·mol–1)
    –18–47–58–42–31
    下载: 导出CSV

    表 4  Al与SrB6, Al与LaB6之间可能的密排和近似密排方向及其错配度

    Table 4.  Interatomic spacing misfit along possible matching directions between LaB6 and Al matrix, SrB6 and Al matrix.

    [100]Al/ [100]SrB6[100]Al/ [110]SrB6[100]Al/ [111]SrB6[110]Al/ [100]SrB6[110]Al/ [110]SrB6[110]Al/ [111]SrB6[112]Al/ [100]SrB6[112]Al/ [110]SrB6[112]Al/ [111]SrB6
    3.68%46.63%79.57%26.69%3.68%26.98%15.35%19.72%46.62%
    [100]Al/ [100]LaB6[100]Al/ [110]LaB6[100]Al/ [111]LaB6[110]Al/ [100]LaB6[110]Al/ [110]LaB6[110]Al/ [111]LaB6[112]Al/ [100]LaB6[112]Al/ [110]LaB6[100]Al/ [111]LaB6
    2.67%45.20%77.82%27.40%2.67%25.74%16.17%18.55%45.19%
    下载: 导出CSV

    表 5  SrB6与Al, LaB6与Al之间可能的密排和近似密排面对及其错配度

    Table 5.  Interplanar spacing mismatch between close or nearly close packed planes in LaB6 and Al matrix, SrB6 and Al matrix.

    (200)Al/ (100)SrB6(200)Al/ (110)SrB6(200)Al/ (111)SrB6(220)Al/ (100)SrB6(220)Al/ (110)SrB6(220)Al/ (111)SrB6(111)Al/ (100)SrB6(111)Al/ (110)SrB6(111)Al/ (111)SrB6
    3.68%26.70%40.23%46.63%3.67%15.47%79.40%26.84%3.42%
    (200)Al/ (100)LaB6(200)Al/ (110)LaB6(200)Al/ (111)LaB6(220)Al/ (100)LaB6(220)Al/ (110)LaB6(220)Al/ (111)LaB6(111)Al/ (100)LaB6(111)Al/ (110)LaB6(111)Al/ (111)LaB6
    2.67%27.41%40.73%45.20%2.65%16.17%77.65%26.60%2.56%
    下载: 导出CSV
  • [1]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 物理学报 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [2]

    Dursun T, Soutis C 2014 Mater. Des. 55 862Google Scholar

    [3]

    Kim Y M, Choi S W, KimY C 2023 J. Therm. Anal. Calorim. 140 10749Google Scholar

    [4]

    Chen Z N, Kang H J, Fan G H, Li J H, Jie J C 2016 Acta Mater. 120 168Google Scholar

    [5]

    宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣 2021 物理学报 70 086402Google Scholar

    Song Y, Jiang H X, Zhao J Z, He J, Zhang L L, Li S X 2021 Acta Phys. Sin. 70 086402Google Scholar

    [6]

    Bolzoni L, Xia M X, Babu N H 2016 Sci. Rep. 6 39554Google Scholar

    [7]

    Ferrarini C F, Bolfarini C, Kiminami C S, Botta W J 2004 Mater. Sci. Eng. A 375 577Google Scholar

    [8]

    Dang B, Zhang X, Chen Y Z, Chen C X, Wang H T, Liu F 2016 Sci. Rep. 6 30874Google Scholar

    [9]

    Wang J Y, Wang B J, Huang L F 2017 Mater. Sci. Technol. 33 1235Google Scholar

    [10]

    王宝剑, 王建元, 吴文华, 翟薇, 王旭, 靳占奎, 魏炳波 2023 中国科学:技术科学 53 353

    Wang B J, Wang J Y, Wu W H, Zhai W, Wang X, Jin Z K, Wei B B 2023 Sci. China Technol. Sci. 53 353

    [11]

    Banerjee K, Chatterjee U K 2000 Mater. J. Mater. Sci. Technol. 16 517Google Scholar

    [12]

    Timelli G, Caliari D, Rakhmonov J 2016 J. Mater. Sci. Technol. 32 515Google Scholar

    [13]

    Birol Y 2012 Mater. Sci. Technol. 28 363Google Scholar

    [14]

    Barrirero J, Engstler M, Ghafoor N 2014 J. Alloys Compd. 611 410Google Scholar

    [15]

    Chen J K, Hung H Y, Wang C F, Tang N K 2017 Int. J. Heat Mass Transf. 105 189Google Scholar

    [16]

    Li J H, Wang X D, Ludwig T H, Tsunekawa Y, Arnberg L, Jiang J Z 2015 Acta Mater. 84 153Google Scholar

    [17]

    Jiang H X, Li S X, Zheng Q J, Zhang L L, He J, Song Y, Deng C K, Zhao J Z 2020 Mater. Des. 195 108991Google Scholar

    [18]

    Zheng Q J, Jiang H X, He J, Zhang L L, Zhao J Z 2021 Sci. China Technol. Sci. 64 2012Google Scholar

    [19]

    Jiang H X, Zheng Q J, Song Y, Li Y Q, Li S X, He J, Zhang L L, Zhao J Z 2022 Mater Charact. 185 111750Google Scholar

    [20]

    Chen Y, Pan Y, Lu T, Tao S W, Wu J L 2014 Mater. Des. 64 432Google Scholar

    [21]

    郑秋菊, 叶中飞, 江鸿翔, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Mater. Sin. 57 103

    [22]

    Heo U, Han D W, Kim S, Mo C B 2022 Mater. Today Commun. 32 104005Google Scholar

    [23]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [24]

    Huang L, Gunther E, Doetsch C, Mehling H 2010 Thermochim. Acta 509 93Google Scholar

    [25]

    Birol Y 2012 Mater. Sci. Technol. 28 70Google Scholar

    [26]

    Cui X L, Wu Y Y, Gao T, Liu X F 2014 J. Alloys Compd. 615 906Google Scholar

    [27]

    Lu T, Pan Y, Wu J L, Tao S W, Chen Y 2015 Int. J. Min. Met. Mater. 22 405Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Lu S Z, Hellawell A 1987 Metall. Trans. 18A 1721

    [30]

    Li C L, Pan Y, Lu T, Jing L J, Pi J H 2018 Met. Mater. Int. 24 1133Google Scholar

    [31]

    Luo Q, Li X L, Li Q 2023 J. Mater. Sci. Technol. 135 97Google Scholar

    [32]

    Zhang M X, Kelly P M 2005 Scr. Mater. 52 963Google Scholar

    [33]

    Jing L J, Pan Y, Lu T, Pi J H, Gu T F 2018 T. Nonferr. Metal. Soc. 28 1687Google Scholar

    [34]

    Easton M A, StJohn D H 2001 130th TMS Annual Meeting New Orleans, La, February 11–15, 2000 p927

    [35]

    Zhou S H, Napolitano R E 2006 Acta Mater. 54 831Google Scholar

    [36]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [37]

    Li S B, Du W B, Wang X D 2018 Acta Metall. Sin. 54 911Google Scholar

    [38]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [39]

    Mayadas A F, Shatzkes M 1970 Phys.Rev.B. 1 1382Google Scholar

    [40]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX, March 10–12, 2019 p193

    [41]

    Sauvage X, Bobruk E V, Murashkin M Y 2015 Acta Mater. 98 355Google Scholar

    [42]

    Ma S M, Wang X M 2019 Mater. Sci. Eng. A 754 46Google Scholar

  • [1] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [2] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [3] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [5] 满田囡, 张林, 项兆龙, 王文斌, 高建文, 王恩刚. 添加Ti对Al-Bi难混溶合金组织和性能的影响. 物理学报, 2018, 67(3): 036101. doi: 10.7498/aps.67.20172256
    [6] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [7] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [8] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [11] 刘铖铖, 曹全喜. Y3Al5O12的热输运性质的第一性原理研究. 物理学报, 2010, 59(4): 2697-2702. doi: 10.7498/aps.59.2697
    [12] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [13] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究. 物理学报, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [14] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织. 物理学报, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [15] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [16] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] 同育全, 申宝成, 甘玉生, 闫志杰. 铸锭凝固组织对相应非晶合金晶化过程中二十面体准晶相形成动力学的影响. 物理学报, 2005, 54(10): 4556-4561. doi: 10.7498/aps.54.4556
    [19] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
    [20] 张鹏, 杜云慧, 曾大本. 电磁-机械复合场对合金凝固组织影响的研究. 物理学报, 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
计量
  • 文章访问数:  1994
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-09
  • 上网日期:  2024-01-23
  • 刊出日期:  2024-04-05

/

返回文章
返回