搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超晶格插入层对InGaN/GaN多量子阱的应变调制作用

曹文彧 张雅婷 魏彦锋 朱丽娟 徐可 颜家圣 周书星 胡晓东

引用本文:
Citation:

超晶格插入层对InGaN/GaN多量子阱的应变调制作用

曹文彧, 张雅婷, 魏彦锋, 朱丽娟, 徐可, 颜家圣, 周书星, 胡晓东

Strain modulation effect of superlattice interlayer on InGaN/GaN multiple quantum well

Cao Wen-Yu, Zhang Ya-Ting, Wei Yan-Feng, Zhu Li-Juan, Xu Ke, Yan Jia-Sheng, Zhou Shu-Xing, Hu Xiao-Dong
PDF
HTML
导出引用
  • 在InGaN/GaN异质结构量子阱内存在巨大的压电极化场, 这严重地削弱了量子阱的发光效率. 为了减弱量子阱内的压电极化场, 通常引入应变调制插入层提升器件的发光性能. 为了研究InGaN/GaN超晶格的应变调制效果和机理, 实验设计制备了具有n型InGaN/GaN超晶格插入层的外延结构及其对照样品. 变温光致发光谱测试表明引入n型InGaN/GaN超晶格插入层的样品发光波长更短且内量子效率提升, 相应的电致发光谱积分强度也显著增加且半宽减小, 说明引入超晶格应变插入层可以在一定程度上抑制影响发光效率的量子限制Stark效应. 理论计算结果表明: 在生长有源区量子阱前引入超晶格应变层, 可以削弱有源区量子阱内极化内建电场, 减弱有源区量子阱能带倾斜, 增加电子空穴波函数交叠, 提高发射几率, 缩短辐射复合寿命, 有利于辐射复合与非辐射复合的竞争, 实现更高的复合效率, 从而提高发光强度. 本文从实验和理论两方面验证了超晶格应变调制插入层可以有效改善器件性能, 为器件的结构设计优化指明方向.
    The strong piezoelectric field in InGaN/GaN heterostructure quantum wells severely reduces the light emission efficiency of multiple quantum well (MQW) structures. To address this issue, a strain modulation interlayer is commonly used to mitigate the piezoelectric polarization field and improve the luminescence performance of the devices. To investigate the influence and mechanism of strain modulation in the InGaN/GaN superlattice (SL), epitaxial wafers with an n-type InGaN/GaN SL interlayer sample, and their corresponding control samples are prepared. The measured temperature-dependent photoluminescence (PL) spectra of the epitaxial wafers, show that the introduction of an SL interlayer leads to a shorter-wavelength emission and enhancement of internal quantum efficiency. As the temperature increases, a blue shift of the PL peak is observed. However, for the sample with an SL interlayer, the blue shift of the PL peak with temperature increasing is relatively small. Electroluminescence (EL) experiments indicate that the introduction of an SL interlayer significantly increases the integrated intensity of the EL peak and reduces its full width at half maximum. These phenomena collectively indicate that the incorporation of a superlattice interlayer can partly suppress the quantum-confined Stark effect (QCSE) that affects the light emission efficiency. Theoretical calculations show that the introduction of a superlattice strain layer before growing an active multiple quantum well can weaken the polarization-induced built-in electric field in the active quantum well, reduce the tilt of the energy band in the multiple quantum well active region, increase the overlap of electron and hole wave functions, enhance the emission probability, shorten the radiative recombination lifetime, and promote competition between radiative recombination and non-radiative recombination, thereby achieving higher recombination efficiency and improving light emission intensity. This study provides experimental and theoretical evidence that the strain modulation SL interlayer can effectively improve the device performance and offer guidance for optimizing the structural design of devices.
      通信作者: 周书星, sxzhou@hbuas.edu.cn
    • 基金项目: 湖北省教育厅科研计划(批准号: Q20222607)、襄阳市基础研究科技计划(批准号: 2022ABH006045)、电子制造与封装集成湖北省重点实验室(武汉大学)开放基金(批准号: EMPI2023009)、湖北文理学院教学研究项目(批准号: JY2023017)和湖北文理学院博士科研启动基金 (批准号: 2020170367) 资助的课题.
      Corresponding author: Zhou Shu-Xing, sxzhou@hbuas.edu.cn
    • Funds: Project supported by the Research Program of Department of Education of Hubei Province, China (Grant No. Q20222607), the Basic Research Science and Technology Plan of Xiangyang City, China (Grant No. 2022ABH006045), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University), China (Grant No. EMPI2023009), the Teaching Research Project of Hubei University of Arts and Science, China (Grant No. JY2023017), and the Doctoral Research Staring Foundation Project of Hubei University of Arts and Science, China (Grant No. 2020170367).
    [1]

    Han D, Kim J, Shin D, Shim J 2023 Opt. Express 31 15779Google Scholar

    [2]

    Jeong H, Jeong H, Oh H, Hong C, Suh E, Lerondel G, Jeong M 2015 Sci. Rep. 5 9373Google Scholar

    [3]

    Zhou S, Wan Z, Lei Y, Tang B, Tao G, Du P, Zhao X 2022 Opt. Lett. 47 1291Google Scholar

    [4]

    Wu Y, Xiao Y, Navid I, Sun K, Malhotra Y, Wang P, Wang D, Xu Y, Pandey A, Reddeppa M, Shin W, Liu J, Min J, Mi Z 2022 Light Sci. Appl. 11 294Google Scholar

    [5]

    Das S, Lenka T, Talukdar F, Sadaf S, Velpula R, Nguyen H 2022 Appl. Opt. 61 8951Google Scholar

    [6]

    Cho L, Lee B, Lee K, Kim J, Ryu M 2021 J. Nanosci. Nanotechnol. 21 5648Google Scholar

    [7]

    Hu H, Zhou S, Wan H, Liu X, Li N, Xu H 2019 Sci. Rep. 9 3447Google Scholar

    [8]

    Li X, Liu J, Su X, Huang S, Tian A, Zhou W, Jiang L, Ikeda M, Yang H 2021 Materials (Basel, Switzerland) 14 1877Google Scholar

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 58502Google Scholar

    [10]

    邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 物理学报 58 590Google Scholar

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590Google Scholar

    [11]

    Shi J L, Shin Y C, Kim K C, Kim E H, Yun M S, Moon Y, Hwang S M, Kim T G 2008 J. Cryst. Growth 311 103Google Scholar

    [12]

    齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 物理学报 65 077801Google Scholar

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801Google Scholar

    [13]

    Cui S, Tao G, Gong L, Zhao X, Zhou S 2022 Materials (Basel, Switzerland) 15 8649Google Scholar

    [14]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106Google Scholar

    [15]

    Chen C, Hsieh C, Liao C, Chung W, Chen H, Cao W, Chang W, Chen H, Yao Y, Ting S, Kiang Y, Yang C, Hu X 2012 Opt. Express 20 11321Google Scholar

    [16]

    Kuroda T, Tackeuchi A, Sota T 2000 Appl. Phys. Lett. 76 3753Google Scholar

    [17]

    Akasaka T, Gotoh H, Saito T, Makimoto T 2004 Appl. Phys. Lett. 85 3089Google Scholar

    [18]

    Kumano H, Hoshi K, Tanaka S, Suemune I, Shen X Q, Riblet P, Ramvall P, Aoyagi Y 1999 Appl. Phys. Lett. 75 2879Google Scholar

    [19]

    Ridley B K, Schaff W J, Eastman L F 2003 J. Appl. Phys. 94 3972Google Scholar

    [20]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices (New York: Wiley) p45

    [21]

    Hsu L, Walukiewicz W 1998 Appl. Phys. Lett. 73 339Google Scholar

    [22]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204Google Scholar

    [23]

    Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wiley) p560

    [24]

    Zhang H, Miller E J, Yu E T, Poblenz C, Speck J S 2004 Appl. Phys. Lett. 84 4644Google Scholar

    [25]

    Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G, Johnson N M 2002 Appl. Phys. Lett. 81 490Google Scholar

    [26]

    Braun W, Dowd P, Guo C Z, Chen S L, Ryu C M, Koelle U, Johnson S R, Zhang Y H, Tomm J W, Elsässer T, Smith D J 2000 J. Appl. Phys. 88 3004Google Scholar

  • 图 1  器件外延结构示意图 (a) 传统MQW结构; (b) 超晶格应变层MQW结构

    Fig. 1.  Schematic diagram of the device epitaxial structure: (a) Traditional MQW structure; (b) MQW structure with a superlattice interlayer.

    图 2  传统MQW结构在不同温度下的光致发光谱. 插图为PL谱积分强度随温度的变化及Arrhenius拟合曲线

    Fig. 2.  PL spectra of the traditional MQW structure at different temperatures. The inset shows the temperature dependence of the integrated PL intensity with the best fitting of the Arrhenius plot.

    图 3  超晶格应变层MQW结构在不同温度下的光致发光谱. 插图为PL谱积分强度随温度的变化及Arrhenius拟合曲线

    Fig. 3.  PL spectra of the MQW structure with a SL interlayer at different temperatures. The inset shows the temperature dependence of the integrated PL intensity with the best fitting of the Arrhenius plot.

    图 4  两种MQW结构PL谱峰值能量随温度的变化

    Fig. 4.  Temperature-dependent variations of PL spectral peak energy for two MQW structures.

    图 5  注入电流为100 mA时两种MQW结构的电致发光谱

    Fig. 5.  EL spectra of two MQW structures at injection current of 100 mA.

    图 6  注入电流为100 mA时两种样品的能带结构

    Fig. 6.  Energy band diagrams of two samples at injection current of 100 mA.

    图 7  注入电流为100 mA时, MQW结构(a)和超晶格应变层MQW结构(b)五个量子阱中电子空穴波函数空间分布和交叠

    Fig. 7.  Electron and hole wave function distributions and overlaps in the five quantum wells of the MQW structure (a) and MQW structure with a SL interlayer (b) at 100 mA.

    表 1  拟合参数α, β, EA1, EA2及内量子效率

    Table 1.  Fitting Parameters of α, β, EA1, and EA2 together with the internal quantum efficiency.

    SampleIQE/%$ \alpha $$ \beta $$ {E_{{\text{A1}}}}{\text{/meV}} $$ {E_{{\text{A2}}}}{\text{/meV}} $
    MQW220.339.285.3647.80
    MQW+SL260.348.232.0533.37
    下载: 导出CSV

    表 2  量子阱中电场强度和波函数交叠积分模拟结果

    Table 2.  Simulation results of the electric field and wave function overlaps in each quantum well.

    MQW Electric field E1/(kV⋅cm–1) Overlap/% MQW+SL
    Electric field E2/(kV⋅cm–1) Overlap/%
    QW1 442.5 83.9 QW1 396.7 89.1
    QW2 467.1 82.7 QW2 410.0 88.7
    QW3 473.0 82.6 QW3 414.3 88.7
    QW4 475.8 82.5 QW4 418.1 88.6
    QW5 484.2 81.2 QW5 425.6 87.8
    下载: 导出CSV
  • [1]

    Han D, Kim J, Shin D, Shim J 2023 Opt. Express 31 15779Google Scholar

    [2]

    Jeong H, Jeong H, Oh H, Hong C, Suh E, Lerondel G, Jeong M 2015 Sci. Rep. 5 9373Google Scholar

    [3]

    Zhou S, Wan Z, Lei Y, Tang B, Tao G, Du P, Zhao X 2022 Opt. Lett. 47 1291Google Scholar

    [4]

    Wu Y, Xiao Y, Navid I, Sun K, Malhotra Y, Wang P, Wang D, Xu Y, Pandey A, Reddeppa M, Shin W, Liu J, Min J, Mi Z 2022 Light Sci. Appl. 11 294Google Scholar

    [5]

    Das S, Lenka T, Talukdar F, Sadaf S, Velpula R, Nguyen H 2022 Appl. Opt. 61 8951Google Scholar

    [6]

    Cho L, Lee B, Lee K, Kim J, Ryu M 2021 J. Nanosci. Nanotechnol. 21 5648Google Scholar

    [7]

    Hu H, Zhou S, Wan H, Liu X, Li N, Xu H 2019 Sci. Rep. 9 3447Google Scholar

    [8]

    Li X, Liu J, Su X, Huang S, Tian A, Zhou W, Jiang L, Ikeda M, Yang H 2021 Materials (Basel, Switzerland) 14 1877Google Scholar

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 58502Google Scholar

    [10]

    邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 物理学报 58 590Google Scholar

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590Google Scholar

    [11]

    Shi J L, Shin Y C, Kim K C, Kim E H, Yun M S, Moon Y, Hwang S M, Kim T G 2008 J. Cryst. Growth 311 103Google Scholar

    [12]

    齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益 2016 物理学报 65 077801Google Scholar

    Qi W J, Zhang M, Pan S, Wang X L, Zhang J L, Jiang F Y 2016 Acta Phys. Sin. 65 077801Google Scholar

    [13]

    Cui S, Tao G, Gong L, Zhao X, Zhou S 2022 Materials (Basel, Switzerland) 15 8649Google Scholar

    [14]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106Google Scholar

    [15]

    Chen C, Hsieh C, Liao C, Chung W, Chen H, Cao W, Chang W, Chen H, Yao Y, Ting S, Kiang Y, Yang C, Hu X 2012 Opt. Express 20 11321Google Scholar

    [16]

    Kuroda T, Tackeuchi A, Sota T 2000 Appl. Phys. Lett. 76 3753Google Scholar

    [17]

    Akasaka T, Gotoh H, Saito T, Makimoto T 2004 Appl. Phys. Lett. 85 3089Google Scholar

    [18]

    Kumano H, Hoshi K, Tanaka S, Suemune I, Shen X Q, Riblet P, Ramvall P, Aoyagi Y 1999 Appl. Phys. Lett. 75 2879Google Scholar

    [19]

    Ridley B K, Schaff W J, Eastman L F 2003 J. Appl. Phys. 94 3972Google Scholar

    [20]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices (New York: Wiley) p45

    [21]

    Hsu L, Walukiewicz W 1998 Appl. Phys. Lett. 73 339Google Scholar

    [22]

    Fiorentini V, Bernardini F, Ambacher O 2002 Appl. Phys. Lett. 80 1204Google Scholar

    [23]

    Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wiley) p560

    [24]

    Zhang H, Miller E J, Yu E T, Poblenz C, Speck J S 2004 Appl. Phys. Lett. 84 4644Google Scholar

    [25]

    Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G, Johnson N M 2002 Appl. Phys. Lett. 81 490Google Scholar

    [26]

    Braun W, Dowd P, Guo C Z, Chen S L, Ryu C M, Koelle U, Johnson S R, Zhang Y H, Tomm J W, Elsässer T, Smith D J 2000 J. Appl. Phys. 88 3004Google Scholar

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] 罗晓华. Schrödinger方程的一般解与超晶格多量子阱的电子跃迁. 物理学报, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [4] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [5] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [6] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [7] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [8] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [10] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [11] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [12] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [13] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [14] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [15] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [16] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [17] 丁志博, 姚淑德, 王 坤, 程 凯. Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析. 物理学报, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [18] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [19] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解. 物理学报, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [20] 魏建华, 解士杰, 梅良模. 混合金属卤化物的超晶格与量子线特征. 物理学报, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
计量
  • 文章访问数:  1878
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2024-01-02
  • 上网日期:  2024-01-20
  • 刊出日期:  2024-04-05

/

返回文章
返回