搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花状硫化铜级次纳米结构的制备及可见光催化活性研究

赵娟 胡慧芳 曾亚萍 程彩萍

引用本文:
Citation:

花状硫化铜级次纳米结构的制备及可见光催化活性研究

赵娟, 胡慧芳, 曾亚萍, 程彩萍

Preparation of flower-like CuS hierarchical nanostructures and its visible light photocatalytic performance

Zhao Juan, Hu Hui-Fang, Zeng Ya-Ping, Cheng Cai-Ping
PDF
导出引用
  • 本实验以氯化铜 (CuCl2·2H2O) 和二硫化碳(CS2)为原料, 以乙二醇(C2H6O2) 为溶剂, 通过溶剂热法成功制备了具有可见光活性的花状硫化铜(CuS) 级次纳米结构. 并利用X射线粉末衍射技术(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM) 等技术对其进行了表征, 利用紫外可见吸收光谱(Uv-vis)分析了其光学性能, 并以甲基橙为目标降解物对其可见光催化活性进行了研究. 结果表明: 花状CuS级次纳米结构具有很高的可见光催化活性, 与体相CuS粉末相比有很大的提高, 在自然光照射下对甲基橙的降解率可以达到100%. 同时本文对花状级次纳米结构的形成机理进行了分析.
    Flower-like copper monosulfide (CuS) hierarchical nanostructures composed of nanoplates were successfully synthesized by means of a simple solvothermal process, using CuCl2·2H2O as Cu-precursor, CS2 as S-source and ethylene glycol (C2H6O2) as the solvent. The morphology and structure of the product were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The optical properties of the copper monosulfide hierarchical nanostructures were investigated by UV-visible absorption spectra. In addition, the photocatalytic activity of the flower-like CuS hierarchical nanostructures were evaluated by the degradation of methyl orange solution under natural light. Results demonstrate that the as-prepared flower-like CuS hierarchical nanostructures possess high photocatalytic performance, the degradation rate is up to 100% after 90 min degradation under the irradiation of natural light, which is much higher than bulk CuS powder. The formation mechanism of flower-like CuS hierarchical nanostructures was preliminarily analysed, alss.
    [1]

    Fujishima A, Honda A 1972 Nature 238 37

    [2]

    Schmidt C M, Buchbinder A M, Weitz E, Geiger F M 2007 J. Phys. Chem. A 111 13023

    [3]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学 61 034212]

    [4]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [5]

    Zhang F, Wong S S 2009 Chem. Mater. 21 4541

    [6]

    Muruganandham M, Kusumoto Y 2009 J. Phys. Chem. C 113 16144

    [7]

    Gorai S, Ganguli D, Chaudhuri S 2005 Cryst. Growth Des. 5 875

    [8]

    Yuan K D, Wu J J, Liu M L, Chen L D, Huang F Q 2008 Appl. Phys. Lett. 93 132106

    [9]

    Li F, Bi W T, Kong T, Qin Q H 2009 Cryst. Res. Technol. 44 729

    [10]

    Chung J S, Sohll L J 2002 J. Power Sources 108 226

    [11]

    Sakamoto T, Sunamura H, Kawaura H, Hasegawa H, Nakayama T, Aono M 2003 Appl. Phys. Lett. 82 3032

    [12]

    Lee H, Yoon S W, Kim E J, Park J 2007 Nano Lett. 7 778

    [13]

    Roy P, Srivastava S K 2007 Mater. Lett. 61 1693

    [14]

    Mao G, Dong W, Kurth D G 2004 Nano Lett. 4 249

    [15]

    Liao X H, Chena N Y, Xub S, Yanga S B, Zhu J J 2003 Cryst. Growth Des. 252 593

    [16]

    Roy P, Srivastava S K 2006 Cryst. Growth Des. 6 1921

    [17]

    Jiang X C, Xie Y, Lu J, He W, Zhu L Y, Qian Y T 2000 J. Mater. Chem. 10 2193

    [18]

    Yangnd Y J, Xiang J W 2005 Appl. Phys. A 7 1351

    [19]

    Lu Q Y, Gao F, Zhao D Y 2002 Nano Lett. 2 725

    [20]

    Gonçalves A P, Lopes E B, Casaca A, Dias M, Almeida M 2008 J Cryst. Growth 310 2742

    [21]

    Ewers T D, Sra A K, Norris B C, Cable R C, Cheng C H, Shantz D F, Schaak R E 2005 Chem. Mater. 17 514

    [22]

    Jiang D, Hu W, Wang H, Shen B, Deng Y 2012 J. Mater. Sci. 47 4972

    [23]

    Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H 2009 J. Phys. Chem. Solids 70 422

    [24]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700

    [25]

    Haram S K, Mahadeshwar A R, Dixit S G 1996 J. Phys. Chem. 100 5868

    [26]

    Chen L Y, Zhang Z D, Wang W Z 2008 J. Phys. Chem. C 112 4117

    [27]

    Yu X L, Cao C B 2007 Adv. Funct. Mater. 17 1397

    [28]

    Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind Pal T 2010 Environ. Sci. Technol. 44 6313

    [29]

    Li F, Wu J F, Qin Q H, Li Z, Huang X T 2009 Powder Technol. 198 267

    [30]

    Hoffman M R, Marttin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69

  • [1]

    Fujishima A, Honda A 1972 Nature 238 37

    [2]

    Schmidt C M, Buchbinder A M, Weitz E, Geiger F M 2007 J. Phys. Chem. A 111 13023

    [3]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese) [李冬冬, 王丽莉 2012 物理学 61 034212]

    [4]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [5]

    Zhang F, Wong S S 2009 Chem. Mater. 21 4541

    [6]

    Muruganandham M, Kusumoto Y 2009 J. Phys. Chem. C 113 16144

    [7]

    Gorai S, Ganguli D, Chaudhuri S 2005 Cryst. Growth Des. 5 875

    [8]

    Yuan K D, Wu J J, Liu M L, Chen L D, Huang F Q 2008 Appl. Phys. Lett. 93 132106

    [9]

    Li F, Bi W T, Kong T, Qin Q H 2009 Cryst. Res. Technol. 44 729

    [10]

    Chung J S, Sohll L J 2002 J. Power Sources 108 226

    [11]

    Sakamoto T, Sunamura H, Kawaura H, Hasegawa H, Nakayama T, Aono M 2003 Appl. Phys. Lett. 82 3032

    [12]

    Lee H, Yoon S W, Kim E J, Park J 2007 Nano Lett. 7 778

    [13]

    Roy P, Srivastava S K 2007 Mater. Lett. 61 1693

    [14]

    Mao G, Dong W, Kurth D G 2004 Nano Lett. 4 249

    [15]

    Liao X H, Chena N Y, Xub S, Yanga S B, Zhu J J 2003 Cryst. Growth Des. 252 593

    [16]

    Roy P, Srivastava S K 2006 Cryst. Growth Des. 6 1921

    [17]

    Jiang X C, Xie Y, Lu J, He W, Zhu L Y, Qian Y T 2000 J. Mater. Chem. 10 2193

    [18]

    Yangnd Y J, Xiang J W 2005 Appl. Phys. A 7 1351

    [19]

    Lu Q Y, Gao F, Zhao D Y 2002 Nano Lett. 2 725

    [20]

    Gonçalves A P, Lopes E B, Casaca A, Dias M, Almeida M 2008 J Cryst. Growth 310 2742

    [21]

    Ewers T D, Sra A K, Norris B C, Cable R C, Cheng C H, Shantz D F, Schaak R E 2005 Chem. Mater. 17 514

    [22]

    Jiang D, Hu W, Wang H, Shen B, Deng Y 2012 J. Mater. Sci. 47 4972

    [23]

    Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H 2009 J. Phys. Chem. Solids 70 422

    [24]

    Gao P X, Ding Y, Mai W, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700

    [25]

    Haram S K, Mahadeshwar A R, Dixit S G 1996 J. Phys. Chem. 100 5868

    [26]

    Chen L Y, Zhang Z D, Wang W Z 2008 J. Phys. Chem. C 112 4117

    [27]

    Yu X L, Cao C B 2007 Adv. Funct. Mater. 17 1397

    [28]

    Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind Pal T 2010 Environ. Sci. Technol. 44 6313

    [29]

    Li F, Wu J F, Qin Q H, Li Z, Huang X T 2009 Powder Technol. 198 267

    [30]

    Hoffman M R, Marttin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响. 物理学报, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [3] 张珠峰, 任银拴. 溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能. 物理学报, 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [4] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [5] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [6] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [7] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [8] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [9] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [10] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [11] 郭昭龙, 赵海新, 赵卫. 纳米ZnO-SiO2自清洁增透薄膜的制备及其性能. 物理学报, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [12] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [13] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [14] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [15] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [16] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [17] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [18] 陈应天, 何祚庥. 强辐射催化法提纯多晶硅. 物理学报, 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [19] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [20] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末. 物理学报, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
计量
  • 文章访问数:  7090
  • PDF下载量:  978
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-03
  • 修回日期:  2013-03-27
  • 刊出日期:  2013-08-05

/

返回文章
返回