搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强辐射催化法提纯多晶硅

陈应天 何祚庥

引用本文:
Citation:

强辐射催化法提纯多晶硅

陈应天, 何祚庥

Comprehensive Survey for the Frontier Disciplines

Chen Ying-Tian, T. H. Ho
PDF
导出引用
  • 将低纯度的金属硅,提纯成可用于制造太阳能电池的高纯硅材料的主要关键, 是去除材料中的硼杂质.本文提出了一种采用特殊的造渣过程以去除硼杂质的新方法.在这种新方法中,为了促进快速的化学反应,采用高密度的光子作为催化剂,以达到太阳能级硅材料的标准.本文对使用这种新的强辐射催化法炼硅的高温工具、冶炼方法、材料配方、材料的混合、以及渣剂的分离等关键技术,进行了详尽的公开和讨论,并在强辐射光催化原理的研究方面提出了一些探索性的机理.为了方便读者使用本文所提出的方法,建立起一套完整的提炼太阳能级硅材料的工业系统,本文也
    Among others, the removal of boron is the key issue to effectively purify metallurgical silicon into solar grade silicon. An innovative slagging process is proposed in this article after reviewing many previous studies. In the process, strong radiation is employed as catalysis to promote the chemical reaction. The authors have for the first time unveiled the secrets including the newly developed high temperature tools, the materials used, the method of mixing materials before purification, the process for separating silicon from residuals after purification, etc.. In the meantime, the authors also propose a postulate to explain the mechanism of the catalysis process. Except the removal of boron, the processes to remove other impurities, such as phosphorous and residual metals using electron beam and magnetic floating directional solidification are also discussed for the completion of a new industrial process to fabricate pure silicon. In the article, the authors also extend their discussion to the possibility of using the proposed non-imaging heliostat in other fields; to the possibility to further manufacture electronic grade silicon using the same process; to the possibility to obtain more experimental evidences for the postulate of strong radiation catalysis and to other subjects related to authors' claimed creations. It is sincerely hoped that the publication of the innovations reported in this article may provide an alternative way in the route map for the use of renewable energy of low cost and low carbon emission.
    [1]

    Bass M. 1995 Handbook of Optics (New York: McGraw-Hill)1 p147

    [2]

    Cruickshark F D, Hills G A 1960 J. Opt. Soc. Am. 50 379

    [3]

    Chen Y T, Chong K K, Bligh T P, Chen L C, Yunus J, Kannan K S, Lim B H, Lim C S, Alias M A, Bidin N, Aliman O, Salehan S, Rezan S A H, Tam C M, Tan K K 2001 Solar Energy 71 155

    [4]

    Chen Y T, Chong K K, Lim C S, Lim B H, Tan K K, Aliman O, Bligh T P, Tan B K, Ismail G 2002 Solar Energy 72 531

    [5]

    Deng F, Tang Z L 2009 Technology of Silicon Polycrystal Manufacture (Beijing, Chemical Industry Press) (in Chinese)[邓 丰、唐正林 2009 多晶硅生产技术 (北京:化学工业出版社) ]

    [6]

    Yang D R 2005 Silicon Semiconductor Materials (Beijing. Mechanical Industry Press) (in Chinese)[杨德仁 2005 半导体硅材料 (北京:机械工业出版社) ]

    [7]

    Orlova E A, Zagrebaev S A, Orlov M A, Kozlov F A, Alekseev V V, Drobyshev A V, Zhmurin V G, Zasorin I I, Kozlova N A 2010 Bulletin of The Lebedev Physics Institute 37 321

    [8]

    Tamendarov M F, Mukashev B N, Abdullin K A, Kulekeev Z A, Bekturganov N S, Beketov B A 2006 PCT Patent WO 041271 A1

    [9]

    Sakaguchi Y, Ishizak M, Kawahara T, Fukai M, Yoshiyagawa M, Aratani F 1992 ISIJ International 32 643

    [10]

    Lynch D C, Oye H. A 2007 PCT Patent WO 127126 A2

    [11]

    Ruixian Science Technology Ltd 2010 CN 101857232 [瑞贤科技股份有限公司 2010 CN 〖12] Gao W X, Chu J H 2010 Commun Phys Chem 11 21(in Chinese)[高文秀、褚君浩 2010 化学物理通讯 11 21]

    [12]

    Strebkov D S, Pinov A, Zadde V V, Tsuo Y S, Touryan K, Murphy L, Gee J M 1998 8th Workshop on Crystalline Silicon Solar Cell Materials and Processes Colorado, The United States of America, August 17—19 1998 p18

    [13]

    Strebkov D S, Pinov A, Zadde V V, Lebedev E N, Belov E P, Efimov N K, Kleshevnikova S I, Touryan K, Bleak D 2004 14th Workshop on Crystalline Silicon Solar Cell and Modules Colorado, The United States of America, August 8-11, 2004 p174

    [14]

    Sakaguchi Y., Yuge N, Nakamura N, Baba H, Hanazawa K, Abe M, Kato Y 1997 14th Eur. PV Solar Energy Conf. Barcelona, Spain, 30 June—4 July, 1997 p157

    [15]

    Schmid F, Khattack C P, Joyce D B 2002 U. S. Patent 6,368,403 B1

    [16]

    Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F 2001 Prog. Photovolt: Res. Appl. 9 203

    [17]

    Ciszek T F, Wang T H, Page M R, Bauer R E, Landry M D 2002 29th IEEE PV Specialist Conference Louisiana, The United States of America, May 20—24, 2002 p131

    [18]

    Khattack C P, Joyce D B, Schmid F 2002 Solar Energy Materials & Solar Cells 74 77

    [19]

    Bildl E, Dietl J, Baueregger R, Seifert D 1986 U. S. Patent 4,588,571

    [20]

    Biello D 2010 www.scientificamerican.com

    [21]

    Ito N, Kondo J, Okazawa K, Okajima M 2006 PCT Patent WO 095663 A2 Shi Jun 2011 New Materials Industry 3 20 (in Chinese)[史 珺 2011 新材料产业 3 20 ]

    [22]

    Chen Y T, Zhang Y, Hu S, Ho T H, Lim B H, Lim C S 2009 Commun. Theor. Phys. 52 549

    [23]

    Lu D, Chen Y T, Hu S, Zhang Y 2010 Commun. Theor. Phys. 54 175

    [24]

    Chen Y T, Zhang Y, Hu S, Ho T H, Lim B H, Lim C S, Chong K K, Tan B K 2009 Commun. Theor. Phys. 52 750

    [25]

    Chen Y T, Chong K K, Lim B H, Lim C S 2003 Solar Energy Materials & Solar Cells 79 1

    [26]

    Chen Y T, Lim B H, Lim C S 2006 Solar Energy 80 268

    [27]

    Zaibel R, Pagan E, Ries H 1995 Solar Energy Material and Solar Cells 37 191

    [28]

    Li L, Chen Y T, Hu S 2009 Commun. Theor. Phys. 51 315

    [29]

    Lu Z P 2006 J. of USTC 36 1244 (in Chinese)[刘祖平 2006 中国科学技术大学学报 36 1244 ]

    [30]

    Chen Y T, Lim B H, Lim C S 2006 J. of Solar Energy Engineering 128 245

    [31]

    Ries H, Schubnell M, 1990 Solar Energy Materials 21 213

    [32]

    Zhang Y S 1981 Annual of Solar Energy Society of China (in Chinese)[张迎胜 1981 中国太阳能学会年会论文]

    [33]

    Chen Y T, Bligh T P 1997 British Patent 9721019.9

    [34]

    He Z X 2009 Proceedings of the Forum on the Technology Development of New Energy and Renewable Energy in China p1 (in Chinese)[何祚庥 2009 中国新能源及可再生能源科技发展论坛,p1]

    [35]

    Kribus A 2006 Commun. & Theor. Phys. 45 163

    [36]

    Kennedy C, Terwilliger K, Milbourne M 2005 2004 DOE Solar Energy Technologies Program Review Meeting NREL/CP-520-36582 Colorado, The United States of America, October 25—28, 2004

    [37]

    Cochran C N 1987 In light Metal (Ed. by Zabreznik R D) p429

    [38]

    Murray J P 1999 Solar Energy 66 133

    [39]

    Rodriquez–Donoso G P, Ruiz J, Fernandez B J, Vazquez-Vaamonde A J 1995 Materials & Design 16 163

    [40]

    Imhof A 1991 Solar Energy Materials 24 733

    [41]

    De Young R J 1986 J. of Quantum Electronics 22 1019

    [42]

    Flamant G, Kurtcuoglu V, Murray J, Steinfeld A 2006 Solar Energy Materials & Solar Cells 90 2099

    [43]

    Tsuchiya M, Sankaranarayanan S K R S, Ramanathan S 2009 Progress in Materials Science 54 981

    [44]

    Roy R, Rao M L, Kanzius J 2008 Materials Research Innovations 12 3

    [45]

    Chen Y T, Ho T H, Lim C S, Lim B H 2010 Chin. Phys. B 19 118105 Chen Y T, Lim C S, Ho T H, Lim B H, Wang Y N 2009 Chin. Phys. Lett. 26 78103

    [46]

    Teixeira L A V, Tokuda Y, Yoko T, Morita K 2009 ISIJ International 49 777

    [47]

    Tolman R C 1938 Principle of statistical mechanics (London: Oxford Univ. Press)

    [48]

    Beijing Yingtian Solar Energy Technology Ltd 2011 Chinese Patentapplication 201110025326.6 [北京应天阳光太阳能技术有限公司2011中国专利申请 201110025326.6]

    [49]

    Beijing Yingtian Solar Energy Technology Ltd 2010 Chinese4 Patentapplication 201010282839.0 [北京应天阳光太阳能技术有限公司2010 中国专利申请 201010282839.0]

    [50]

    Beijing Yingtian Solar Energy Technology Ltd 2011 Chinese Patenapplication 201110000236.1 [北京应天阳光太阳能技术有限公司2011 中国专利申请 201110000236.1]

    [51]

    Morita K, Miki T 2003 Intermetallics 11 1111

    [52]

    Mori N 1995 U. S. Patent 5,454,424

    [53]

    Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F 2001 Prog. Photovolt: Res. Appl. 9 203

    [54]

    Miyake M, Hiramatsu T, Maeda M 2006 J. Japan Inst. Metals 70 43

  • [1]

    Bass M. 1995 Handbook of Optics (New York: McGraw-Hill)1 p147

    [2]

    Cruickshark F D, Hills G A 1960 J. Opt. Soc. Am. 50 379

    [3]

    Chen Y T, Chong K K, Bligh T P, Chen L C, Yunus J, Kannan K S, Lim B H, Lim C S, Alias M A, Bidin N, Aliman O, Salehan S, Rezan S A H, Tam C M, Tan K K 2001 Solar Energy 71 155

    [4]

    Chen Y T, Chong K K, Lim C S, Lim B H, Tan K K, Aliman O, Bligh T P, Tan B K, Ismail G 2002 Solar Energy 72 531

    [5]

    Deng F, Tang Z L 2009 Technology of Silicon Polycrystal Manufacture (Beijing, Chemical Industry Press) (in Chinese)[邓 丰、唐正林 2009 多晶硅生产技术 (北京:化学工业出版社) ]

    [6]

    Yang D R 2005 Silicon Semiconductor Materials (Beijing. Mechanical Industry Press) (in Chinese)[杨德仁 2005 半导体硅材料 (北京:机械工业出版社) ]

    [7]

    Orlova E A, Zagrebaev S A, Orlov M A, Kozlov F A, Alekseev V V, Drobyshev A V, Zhmurin V G, Zasorin I I, Kozlova N A 2010 Bulletin of The Lebedev Physics Institute 37 321

    [8]

    Tamendarov M F, Mukashev B N, Abdullin K A, Kulekeev Z A, Bekturganov N S, Beketov B A 2006 PCT Patent WO 041271 A1

    [9]

    Sakaguchi Y, Ishizak M, Kawahara T, Fukai M, Yoshiyagawa M, Aratani F 1992 ISIJ International 32 643

    [10]

    Lynch D C, Oye H. A 2007 PCT Patent WO 127126 A2

    [11]

    Ruixian Science Technology Ltd 2010 CN 101857232 [瑞贤科技股份有限公司 2010 CN 〖12] Gao W X, Chu J H 2010 Commun Phys Chem 11 21(in Chinese)[高文秀、褚君浩 2010 化学物理通讯 11 21]

    [12]

    Strebkov D S, Pinov A, Zadde V V, Tsuo Y S, Touryan K, Murphy L, Gee J M 1998 8th Workshop on Crystalline Silicon Solar Cell Materials and Processes Colorado, The United States of America, August 17—19 1998 p18

    [13]

    Strebkov D S, Pinov A, Zadde V V, Lebedev E N, Belov E P, Efimov N K, Kleshevnikova S I, Touryan K, Bleak D 2004 14th Workshop on Crystalline Silicon Solar Cell and Modules Colorado, The United States of America, August 8-11, 2004 p174

    [14]

    Sakaguchi Y., Yuge N, Nakamura N, Baba H, Hanazawa K, Abe M, Kato Y 1997 14th Eur. PV Solar Energy Conf. Barcelona, Spain, 30 June—4 July, 1997 p157

    [15]

    Schmid F, Khattack C P, Joyce D B 2002 U. S. Patent 6,368,403 B1

    [16]

    Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F 2001 Prog. Photovolt: Res. Appl. 9 203

    [17]

    Ciszek T F, Wang T H, Page M R, Bauer R E, Landry M D 2002 29th IEEE PV Specialist Conference Louisiana, The United States of America, May 20—24, 2002 p131

    [18]

    Khattack C P, Joyce D B, Schmid F 2002 Solar Energy Materials & Solar Cells 74 77

    [19]

    Bildl E, Dietl J, Baueregger R, Seifert D 1986 U. S. Patent 4,588,571

    [20]

    Biello D 2010 www.scientificamerican.com

    [21]

    Ito N, Kondo J, Okazawa K, Okajima M 2006 PCT Patent WO 095663 A2 Shi Jun 2011 New Materials Industry 3 20 (in Chinese)[史 珺 2011 新材料产业 3 20 ]

    [22]

    Chen Y T, Zhang Y, Hu S, Ho T H, Lim B H, Lim C S 2009 Commun. Theor. Phys. 52 549

    [23]

    Lu D, Chen Y T, Hu S, Zhang Y 2010 Commun. Theor. Phys. 54 175

    [24]

    Chen Y T, Zhang Y, Hu S, Ho T H, Lim B H, Lim C S, Chong K K, Tan B K 2009 Commun. Theor. Phys. 52 750

    [25]

    Chen Y T, Chong K K, Lim B H, Lim C S 2003 Solar Energy Materials & Solar Cells 79 1

    [26]

    Chen Y T, Lim B H, Lim C S 2006 Solar Energy 80 268

    [27]

    Zaibel R, Pagan E, Ries H 1995 Solar Energy Material and Solar Cells 37 191

    [28]

    Li L, Chen Y T, Hu S 2009 Commun. Theor. Phys. 51 315

    [29]

    Lu Z P 2006 J. of USTC 36 1244 (in Chinese)[刘祖平 2006 中国科学技术大学学报 36 1244 ]

    [30]

    Chen Y T, Lim B H, Lim C S 2006 J. of Solar Energy Engineering 128 245

    [31]

    Ries H, Schubnell M, 1990 Solar Energy Materials 21 213

    [32]

    Zhang Y S 1981 Annual of Solar Energy Society of China (in Chinese)[张迎胜 1981 中国太阳能学会年会论文]

    [33]

    Chen Y T, Bligh T P 1997 British Patent 9721019.9

    [34]

    He Z X 2009 Proceedings of the Forum on the Technology Development of New Energy and Renewable Energy in China p1 (in Chinese)[何祚庥 2009 中国新能源及可再生能源科技发展论坛,p1]

    [35]

    Kribus A 2006 Commun. & Theor. Phys. 45 163

    [36]

    Kennedy C, Terwilliger K, Milbourne M 2005 2004 DOE Solar Energy Technologies Program Review Meeting NREL/CP-520-36582 Colorado, The United States of America, October 25—28, 2004

    [37]

    Cochran C N 1987 In light Metal (Ed. by Zabreznik R D) p429

    [38]

    Murray J P 1999 Solar Energy 66 133

    [39]

    Rodriquez–Donoso G P, Ruiz J, Fernandez B J, Vazquez-Vaamonde A J 1995 Materials & Design 16 163

    [40]

    Imhof A 1991 Solar Energy Materials 24 733

    [41]

    De Young R J 1986 J. of Quantum Electronics 22 1019

    [42]

    Flamant G, Kurtcuoglu V, Murray J, Steinfeld A 2006 Solar Energy Materials & Solar Cells 90 2099

    [43]

    Tsuchiya M, Sankaranarayanan S K R S, Ramanathan S 2009 Progress in Materials Science 54 981

    [44]

    Roy R, Rao M L, Kanzius J 2008 Materials Research Innovations 12 3

    [45]

    Chen Y T, Ho T H, Lim C S, Lim B H 2010 Chin. Phys. B 19 118105 Chen Y T, Lim C S, Ho T H, Lim B H, Wang Y N 2009 Chin. Phys. Lett. 26 78103

    [46]

    Teixeira L A V, Tokuda Y, Yoko T, Morita K 2009 ISIJ International 49 777

    [47]

    Tolman R C 1938 Principle of statistical mechanics (London: Oxford Univ. Press)

    [48]

    Beijing Yingtian Solar Energy Technology Ltd 2011 Chinese Patentapplication 201110025326.6 [北京应天阳光太阳能技术有限公司2011中国专利申请 201110025326.6]

    [49]

    Beijing Yingtian Solar Energy Technology Ltd 2010 Chinese4 Patentapplication 201010282839.0 [北京应天阳光太阳能技术有限公司2010 中国专利申请 201010282839.0]

    [50]

    Beijing Yingtian Solar Energy Technology Ltd 2011 Chinese Patenapplication 201110000236.1 [北京应天阳光太阳能技术有限公司2011 中国专利申请 201110000236.1]

    [51]

    Morita K, Miki T 2003 Intermetallics 11 1111

    [52]

    Mori N 1995 U. S. Patent 5,454,424

    [53]

    Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F 2001 Prog. Photovolt: Res. Appl. 9 203

    [54]

    Miyake M, Hiramatsu T, Maeda M 2006 J. Japan Inst. Metals 70 43

  • [1] 王艺琳, 兰自轩, 杜汇伟, 赵磊, 马忠权. 重掺杂多晶硅薄膜中磷氧化物的探究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220706
    [2] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220601
    [3] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [5] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [7] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [8] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [9] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [10] 姜丽丽, 路忠林, 张凤鸣, 鲁雄. 低温退火磷吸杂工艺对低少子寿命铸造多晶硅电性能的影响. 物理学报, 2013, 62(11): 110101. doi: 10.7498/aps.62.110101
    [11] 贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳. 彩色多晶硅太阳电池性能研究. 物理学报, 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [12] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [13] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [14] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [15] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [17] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究. 物理学报, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [18] 贾明, 田忠良, 赖延清, 李劼, 伊继光, 闫剑锋, 刘业翔. 电解精炼制备太阳级硅杂质行为研究. 物理学报, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [19] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [20] 赵淑云, 吴春亚, 刘召军, 李学冬, 王 中, 孟志国, 熊绍珍, 张 芳. 大尺寸化学Ni源金属诱导晶化多晶硅的研究. 物理学报, 2006, 55(11): 6095-6100. doi: 10.7498/aps.55.6095
计量
  • 文章访问数:  5149
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-12
  • 修回日期:  2011-04-15
  • 刊出日期:  2011-07-15

强辐射催化法提纯多晶硅

  • 1. 中国科学院理论物理研究所,北京 100190

摘要: 将低纯度的金属硅,提纯成可用于制造太阳能电池的高纯硅材料的主要关键, 是去除材料中的硼杂质.本文提出了一种采用特殊的造渣过程以去除硼杂质的新方法.在这种新方法中,为了促进快速的化学反应,采用高密度的光子作为催化剂,以达到太阳能级硅材料的标准.本文对使用这种新的强辐射催化法炼硅的高温工具、冶炼方法、材料配方、材料的混合、以及渣剂的分离等关键技术,进行了详尽的公开和讨论,并在强辐射光催化原理的研究方面提出了一些探索性的机理.为了方便读者使用本文所提出的方法,建立起一套完整的提炼太阳能级硅材料的工业系统,本文也

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回