搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米ZnO-SiO2自清洁增透薄膜的制备及其性能

郭昭龙 赵海新 赵卫

引用本文:
Citation:

纳米ZnO-SiO2自清洁增透薄膜的制备及其性能

郭昭龙, 赵海新, 赵卫

Preparation and characterization of self-cleaning and anti-reflection ZnO-SiO2 nanometric films

Guo Zhao-Long, Zhao Hai-Xin, Zhao Wei
PDF
导出引用
  • 以乙酸锌醇热法ZnO纳米粒子为基料, 通过溶胶-凝胶浸渍提拉法制备纳米ZnO-SiO2自清洁增透薄膜. 采用透射电镜, 光谱椭偏仪, 扫描电镜, X-射线衍射, 差热分析仪和UV-vis等技术对样品进行表征, 以亚甲基蓝的光催化降解为目标反应, 评价其光催化活性. 结果表明, ZnO纳米粒子为球粒状结构, 直径约12-20 nm, 特征紫外吸收波长位于375 nm 处; 与未涂覆纳米ZnO-SiO2自清洁增透薄膜的石英玻璃基底相比, 涂覆后石英玻璃在400-800 nm波长范围内平均透光率提升达4.17%, 具有良好的宽光谱增透行为; 且在紫外光激发下对亚甲基蓝染料具有光催化降解特性, 进而具备良好的自清洁性能.
    Unlike the general anti-reflection and self-cleaning film such as SiO2 and TiO2-SiO2, the ZnO-SiO2 nanometric film used as a substrate of excellent transparency in visible region and effective photo-catalytic self-cleaning under UV illumination is seldom studied in the application as a substrate; however, it has a lot of advantages including high transmittance and low refractivity. In this paper, a self-cleaning and anti-reflection ZnO-SiO2 nanometric film is successfully fabricated by using a sol-gel dip-coating method. The morphology, crystal structure, surface microstructure and light transmittance of the obtained products are characterized by techniques such as TEM, SAD, XRD, SEM, DTA and UV-vis. Photo-catalytic degradation of the methylene blue (MB) in aqueous solution is used as probe reaction to evaluate the photo-catalytic activity of ZnO-SiO2 nanometric film. The TEM images reveal that the as-prepared ZnO nanoparticles are spherical grains with diameters of 12-20 nm, the average grain diameter is about 14.51 nm. ZnO nanoparticles obtained are of hexagonal wurtzite structure revealed by XRD pattern and there exist no other diffraction peaks, Furthermore, the SAD results show that ZnO microstructurs have good crystallinity. In addition, the ZnO grain size is about 14.41 nm by using the Scherrer formula calculation, which is consistent with the TEM results by the Gauss simulation. The UV-vis spectra reveal that the ultraviolet characteristic absorption peak of ZnO-SiO2 composite films is located at 368 nm and 375 nm after annealing at different temperatures such as 300℃ and 450℃, corresponding to the band gaps of 3.37 eV and 3.31 eV, respectively. It is highly consistent with that obtained from pure ZnO nanoparticles. Increasing the annealing temperature results in a lower refractive index and the increases of the porosity in of the ZnO-SiO2 composite films. It has a uniformly refractive index value about 1.23-1.25 and a high porosity value about 50.3-54.7% when the annealing temperature is 450 ℃. Experimental results show that the ZnO-SiO2 composite film can enhance the light transmittance of the quartz substrate, due to its lower reflective index and higher porosity. Compared with the quartz substrate, the average optical transmission rate of the quartz glass coated with ZnO-SiO2composite films is increased by about 4.17% at 400-800 nm, which favors greatly anti-reflection characteristics in a wide spectrum range. Meanwhile, the ZnO-SiO2 composite films are found to be efficient for photo-catalytically degradation of methylene blue dye under UV illumination, which favors greatly the self-cleaning function.
      通信作者: 郭昭龙, gzlxjtu@opt.ac.cn;weiz@opt.ac.cn ; 赵卫, gzlxjtu@opt.ac.cn;weiz@opt.ac.cn
    • 基金项目: 陕西省科学技术研究发展计划(批准号: S2014GY2700)、陕西省科技统筹创新工程计划(批准号: 2015KTCQ01-63)和西安市科技计划(批准号: GX14021-05)资助的课题.
      Corresponding author: Guo Zhao-Long, gzlxjtu@opt.ac.cn;weiz@opt.ac.cn ; Zhao Wei, gzlxjtu@opt.ac.cn;weiz@opt.ac.cn
    • Funds: Project supported by the Science Technology Research Development of Shaanxi Province, China (Grant No. S2014GY2700), the Science Technology Plan of Innovation of Shaanxi Province, China (Grant No. 2015KTCQ01-63), and the Science Technology Project of Xi'an, China (Grant No. GX14021-05).
    [1]

    Choi S J, Huh S Y 2010 Macromol. Rapid Commun. 31 539

    [2]

    Ye L Q, Zhang Y L, Zhang X X, Hu T, Ji R, Ding B, Jiang B 2013 Sol. Energ. Mat. Sol. C 111 160

    [3]

    Jiang B, Duan X C, Zhou Z C, Cheng Y J, Liu G C, Liu Y L 2011 J. Inorg. Mater. 26 375 (in Chinese) [蒋波, 段学臣, 周志超, 程亚娟, 刘国聪, 刘杨林 2011 无机材料学报 26 375]

    [4]

    Mao Q Q, Zeng D W, Xu K, Xie C 2014 RSC Adv. 4 58101

    [5]

    Zhu J J, Zhao Y L, Zhu L, Gu X Q, Qiang Y H 2014 Chin. Phys. B 23 048104

    [6]

    Yuan Z H, Tang C C, Fan S S 2001 Chin. Phys. Lett. 18 1520

    [7]

    Jia X H, Zheng Y J, Yin L C, Huang H L, Jiang H W, Zhu R H 2014 Acta Phys. Sin. 63 166802 (in Chinese) [贾相华, 郑友进, 尹龙承, 黄海亮, 姜宏伟, 朱瑞华 2014 物理学报 63 166802]

    [8]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [9]

    Wei W, Dai Y, Huang B B, Jacob T 2013 J. Chem. Phys. 139 144703

    [10]

    Go B N, Kim Y D, Kim C, Baek S W, Oh K S, Lee H 2015 Mater. Express 5 49

    [11]

    She G W, Chen X, Wang Y, Qi X P, Mu L X, Shi W S 2012 J. Nanosci. Nanotechno. 12 2756

    [12]

    Peng F, Chen S H, Zhang L, Wang H J, Xie Z Y 2005 Acta Phys. Chim. Sin. 21 944

    [13]

    Shang H K, Zhang X Q, Yao Z G, Teng X Y, Wang Y S, Huang S H 2006 Spectrosc. Spect. Anal. 26 415 (in Chinese) [商红凯, 张希清, 姚志刚, 腾小瑛, 王永生, 黄世华 2006 光谱学与光谱分析 26 415]

    [14]

    Ali M A, Adel A I, Rasha N, Ali A H 2014 J. Photoch. Photobio. A 275 37

    [15]

    Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2009 J. Function Mater. 40 700 (in Chinese) [薛华, 徐小丽, 陈彦, 张国恒, 马书懿 2009 功能材料 40 700]

    [16]

    Kaneva N V, Siuleiman S A, Bojinova A S, Papazova K I, Dimitrov D T, Gracheva I, Karpova S, Moshnikov V A 2013 Bulg. Chem. Commun. 45 611

    [17]

    Zhai J, Tao X, Pu Y, Zeng X F, Chen J F 2010 Appl. Surf. Sci. 257 393

    [18]

    Yan T F, Li Y, Kang J J, Zhou P Y, Sun B Q, Zhang K, Yan S S, Zhang X H 2015 Chin. Phys. Lett. 32 077801

    [19]

    Yuan N Y, He Z J, Zhao C N, Li F, Zhou Y, Li J H 2008 Acta Phys. Sin. 57 2537 (in Chinese) [袁宁一, 何泽军, 赵常宁, 李峰, 周懿, 李金华 2008 物理学报 57 2537]

    [20]

    Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y 2012 ACS Appl. Mater. Interfaces 4 4024

    [21]

    Liu X C, Chen Z Z, Shi E W, Liao D Q, Zhou K J 2011 Chin. Phys. B 20 037501

    [22]

    Pei Z L, Zhang X B, Wang T G, Gong J, Sun C, Wen L S 2005 Acta Metal. Sin. 41 84 (in Chinese) [裴志亮, 张小波, 王铁钢, 宫骏, 孙超, 闻立时 2005 金属学报 41 84]

    [23]

    Gao Y Q, Gereige I, Labban A E, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Interfaces 6 2219

    [24]

    Wang S 2010 Mater. Rev 24 47 (in Chinese) [王珊 2010 材料导报 24 47]

    [25]

    Zhang X X, Zhuang M Y, Lin M Y, Ye L Q, Jiang B 2014 J. Function Mater. 45 133 (in Chinese) [张欣向, 庄梦云, 林明月, 叶龙强, 江波 2014 功能材料 45 133]

    [26]

    Hattori H 2001 Adv. Mater. 13 51

    [27]

    Cai G, Ye J F, Chen S Y, Zhao X W, Zhang D Y, Chen S 2012 Energy Environ. Sci. 5 7575

    [28]

    Liu TJ, Wang Q, Jiang P 2013 RSC Adv. 3 12662

    [29]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103 (in Chinese) [桂青凤, 崔磊, 潘靖, 胡经国 2013 物理学报 62 087103]

  • [1]

    Choi S J, Huh S Y 2010 Macromol. Rapid Commun. 31 539

    [2]

    Ye L Q, Zhang Y L, Zhang X X, Hu T, Ji R, Ding B, Jiang B 2013 Sol. Energ. Mat. Sol. C 111 160

    [3]

    Jiang B, Duan X C, Zhou Z C, Cheng Y J, Liu G C, Liu Y L 2011 J. Inorg. Mater. 26 375 (in Chinese) [蒋波, 段学臣, 周志超, 程亚娟, 刘国聪, 刘杨林 2011 无机材料学报 26 375]

    [4]

    Mao Q Q, Zeng D W, Xu K, Xie C 2014 RSC Adv. 4 58101

    [5]

    Zhu J J, Zhao Y L, Zhu L, Gu X Q, Qiang Y H 2014 Chin. Phys. B 23 048104

    [6]

    Yuan Z H, Tang C C, Fan S S 2001 Chin. Phys. Lett. 18 1520

    [7]

    Jia X H, Zheng Y J, Yin L C, Huang H L, Jiang H W, Zhu R H 2014 Acta Phys. Sin. 63 166802 (in Chinese) [贾相华, 郑友进, 尹龙承, 黄海亮, 姜宏伟, 朱瑞华 2014 物理学报 63 166802]

    [8]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [9]

    Wei W, Dai Y, Huang B B, Jacob T 2013 J. Chem. Phys. 139 144703

    [10]

    Go B N, Kim Y D, Kim C, Baek S W, Oh K S, Lee H 2015 Mater. Express 5 49

    [11]

    She G W, Chen X, Wang Y, Qi X P, Mu L X, Shi W S 2012 J. Nanosci. Nanotechno. 12 2756

    [12]

    Peng F, Chen S H, Zhang L, Wang H J, Xie Z Y 2005 Acta Phys. Chim. Sin. 21 944

    [13]

    Shang H K, Zhang X Q, Yao Z G, Teng X Y, Wang Y S, Huang S H 2006 Spectrosc. Spect. Anal. 26 415 (in Chinese) [商红凯, 张希清, 姚志刚, 腾小瑛, 王永生, 黄世华 2006 光谱学与光谱分析 26 415]

    [14]

    Ali M A, Adel A I, Rasha N, Ali A H 2014 J. Photoch. Photobio. A 275 37

    [15]

    Xue H, Xu X L, Chen Y, Zhang G H, Ma S Y 2009 J. Function Mater. 40 700 (in Chinese) [薛华, 徐小丽, 陈彦, 张国恒, 马书懿 2009 功能材料 40 700]

    [16]

    Kaneva N V, Siuleiman S A, Bojinova A S, Papazova K I, Dimitrov D T, Gracheva I, Karpova S, Moshnikov V A 2013 Bulg. Chem. Commun. 45 611

    [17]

    Zhai J, Tao X, Pu Y, Zeng X F, Chen J F 2010 Appl. Surf. Sci. 257 393

    [18]

    Yan T F, Li Y, Kang J J, Zhou P Y, Sun B Q, Zhang K, Yan S S, Zhang X H 2015 Chin. Phys. Lett. 32 077801

    [19]

    Yuan N Y, He Z J, Zhao C N, Li F, Zhou Y, Li J H 2008 Acta Phys. Sin. 57 2537 (in Chinese) [袁宁一, 何泽军, 赵常宁, 李峰, 周懿, 李金华 2008 物理学报 57 2537]

    [20]

    Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y 2012 ACS Appl. Mater. Interfaces 4 4024

    [21]

    Liu X C, Chen Z Z, Shi E W, Liao D Q, Zhou K J 2011 Chin. Phys. B 20 037501

    [22]

    Pei Z L, Zhang X B, Wang T G, Gong J, Sun C, Wen L S 2005 Acta Metal. Sin. 41 84 (in Chinese) [裴志亮, 张小波, 王铁钢, 宫骏, 孙超, 闻立时 2005 金属学报 41 84]

    [23]

    Gao Y Q, Gereige I, Labban A E, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Interfaces 6 2219

    [24]

    Wang S 2010 Mater. Rev 24 47 (in Chinese) [王珊 2010 材料导报 24 47]

    [25]

    Zhang X X, Zhuang M Y, Lin M Y, Ye L Q, Jiang B 2014 J. Function Mater. 45 133 (in Chinese) [张欣向, 庄梦云, 林明月, 叶龙强, 江波 2014 功能材料 45 133]

    [26]

    Hattori H 2001 Adv. Mater. 13 51

    [27]

    Cai G, Ye J F, Chen S Y, Zhao X W, Zhang D Y, Chen S 2012 Energy Environ. Sci. 5 7575

    [28]

    Liu TJ, Wang Q, Jiang P 2013 RSC Adv. 3 12662

    [29]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103 (in Chinese) [桂青凤, 崔磊, 潘靖, 胡经国 2013 物理学报 62 087103]

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜的物理结构,光学和光催化性能的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240814
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [4] 贾相华, 郑友进, 尹龙承, 黄海亮, 姜宏伟, 朱瑞华. 退火温度对Cu:ZnO薄膜绿光发射的影响. 物理学报, 2014, 63(16): 166802. doi: 10.7498/aps.63.166802
    [5] 刘华松, 季一勤, 姜玉刚, 王利栓, 冷健, 孙鹏, 庄克文. SiO2薄膜内部短程有序微结构研究. 物理学报, 2013, 62(18): 187801. doi: 10.7498/aps.62.187801
    [6] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [7] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [8] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [9] 李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜. In掺杂ZnO薄膜的制备及其白光发射机理. 物理学报, 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [10] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [11] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [12] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [13] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [14] 袁宁一, 何泽军, 赵常宁, 李 峰, 周 懿, 李金华. 纳米ZnO和ZnO-SiO2复合薄膜的光学性质研究. 物理学报, 2008, 57(4): 2537-2542. doi: 10.7498/aps.57.2537
    [15] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [16] 梁丽萍, 徐 耀, 张 磊, 吴 东, 孙予罕, 李志宏, 吴忠华. 溶胶-凝胶方法制备ZrO2及聚合物掺杂ZrO2单层光学增反射膜. 物理学报, 2006, 55(8): 4371-4382. doi: 10.7498/aps.55.4371
    [17] 梁丽萍, 张 磊, 徐 耀, 章 斌, 吴 东, 孙予罕, 蒋晓东, 魏晓峰, 李志宏, 吴忠华. PVP掺杂-ZrO2溶胶-凝胶工艺制备多层激光高反射膜的研究. 物理学报, 2006, 55(11): 6175-6184. doi: 10.7498/aps.55.6175
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [20] 朱开贵, 石建中, 邵庆益. 镶嵌在SiO2薄膜中InAs纳米颗粒的Raman散射. 物理学报, 2000, 49(11): 2304-2306. doi: 10.7498/aps.49.2304
计量
  • 文章访问数:  6376
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2015-11-26
  • 刊出日期:  2016-03-05

/

返回文章
返回