搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场诱导二氧化钒绝缘-金属相变的研究进展

孙肖宁 曲兆明 王庆国 袁扬 刘尚合

引用本文:
Citation:

电场诱导二氧化钒绝缘-金属相变的研究进展

孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合

Research progress of metal-insulator phase transition in VO2 induced by electric field

Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He
PDF
HTML
导出引用
  • 二氧化钒(VO2)是电子强关联体系的典型代表, 其晶体结构在特定阈值的温度、电场、光照和压力等物理场作用下会发生由单斜金红石结构向四方金红石结构的可逆转变, 从而引发绝缘-金属相变. 其中, 电场诱导VO2绝缘-金属相变后的电导率可提高2-5个数量级, 在可重构缝隙天线、太赫兹辐射以及智能电磁防护材料等领域具有广阔的应用前景, 成为近年来人们的研究热点.首先, 简要概述了VO2发生绝缘-金属相变时晶体结构和能带结构的变化, 进而从电场诱导VO2绝缘-金属相变的研究方法、响应时间、临界阈值场强调控以及相变机理几个方面系统总结和评述了近年来国内外学者在该领域的重要发现和研究进展.最后, 指出了当前VO2绝缘-金属相变研究存在的问题, 并展望了未来的发展方向.
    Vanadium dioxide (VO2) is a typical representative of strongly correlated electronic systems, which undergoes a reversible transition from the insulator phase to metal phase, induced by a certain threshold for each of temperature, electric field, illumination and pressure. The crystal structure of VO2 will undergo a reversible transition from monoclinic structure to tetragonal rutile structure when the phase transition happens, which is considered as the microscopic mechanism of VO2 metal-insulator transition (MIT). The conductivity of VO2 can be increased by 2—5 orders of magnitude when the MIT is induced by electric field, which makes VO2 possess good application prospects in the fields of restructurable slot antenna, terahertz radiation, intelligent electromagnetic protection materials, etc. Therefore, the reversible metal-insulator phase transition in VO2, induced by electric field, has long been a research hotspot, which however, has been seldom reported. Firstly, in this paper, the changes of the crystal structure and energy band structure of VO2 during MIT are introduced briefly. The methods of regulating the phase transition are given, including temperature control, bandwidth and band-filling control. Then, the important discovery and research progress of VO2 MIT induced by electric field based on the research method, response time, critical threshold field and phase transition mechanism are summarized and reviewed comprehensively. The method of studying the VO2 phase transition relates to its structure, including planar structure, three-terminal gated ?eld effect switch and sandwiched layer structure. The sandwich layer structure is more suitable for investigating the MIT characteristics of VO2 in experimental stage because of its structural advantage of preparation and test. The response time of VO2 MIT can be completed in nanoseconds, of which the substantial parameter has been revealed by many reports, also including the excellent reversibility of VO2 MIT. The MIT critical threshold field of the VO2 film can be tuned by element doping, coexistence of multivalent vanadium oxides and multiple physical field synergism effectively. The MIT mechanism of VO2 induced by electric field has been proposed so far, which includes joule heating mechanism and pure electric field mechanism, and the latter is considered to be more likely to give a reasonable explanation. Finally, in the paper the current problems of the VO2 MIT research and the near-future development direction of the VO2 MIT materials are also pointed out.
      通信作者: 曲兆明, iamqzm3990@163.com ; 刘尚合, liushh@cae.cn
    • 基金项目: 电磁环境效应国家级重点实验室基金(批准号: 614220504030617)资助的课题.
      Corresponding author: Qu Zhao-Ming, iamqzm3990@163.com ; Liu Shang-He, liushh@cae.cn
    • Funds: Project supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects, China (Grant No. 614220504030617).
    [1]

    Mott N F 1949 Proc. Phys. Soc. 62 416Google Scholar

    [2]

    Morin F 1959 Phys. Rev. Lett. 3 34Google Scholar

    [3]

    Fuls E, Hensler D, Ross A 1967 Appl. Phys. Lett. 10 199Google Scholar

    [4]

    陈培祖, 李毅, 蒋蔚, 徐婷婷, 伍征义, 张娇, 刘志敏 2017 纳米技术 42 387

    Chen P Z, Li Y, Jiang W, Xu T T, Wu Z Y, Zhang J, Liu Z M 2017 Semiconductor Technology 42 387

    [5]

    Tashman J, Lee J, Paik H, Moyer J, Misra R, Mundy J, Spila T, Merz T, Schubert J, Muller D 2014 Appl. Phys. Lett. 104 063104Google Scholar

    [6]

    Chae B G, Kim H T, Yun S J 2008 Electrochem. Solid-State Lett. 11 D53Google Scholar

    [7]

    Youn D H, Lee J W, Chae B G, Kim H T, Maeng S L, Kang K Y 2004 J. Appl. Phys. 95 1407Google Scholar

    [8]

    Chae B G, Youn D H, Kim H T, Maeng S, Kang K Y 2003 Mater. Sci. 103 11616

    [9]

    王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄 2018 物理学报 67 177201Google Scholar

    Wang Z L, Zhang Z H, Zhao Z, Shao R W, Sui M L 2018 Acta Phys. Sin. 67 177201Google Scholar

    [10]

    Golan G, Axelevitch A, Sigalov B, Gorenstein B 2003 Microelectron. J. 34 255Google Scholar

    [11]

    Chen S, Ma H, Dai J, Yi X 2007 Appl. Phys. Lett. 101 117

    [12]

    邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201Google Scholar

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201Google Scholar

    [13]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [14]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [15]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837Google Scholar

    [16]

    Anagnostou D E, Teeslink T S, Torres D, Sepúlveda N 2016 IEEE International Symposium on Antenna and Propagation Pajardo, June 26-July 1 2016, p1055

    [17]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv.Optical Mater. 2018 1701204

    [18]

    Anagnostou D E, Goussetis G, Torres D, Sepulveda N 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, Greece, May 01, 2017 p146

    [19]

    Solyankin P M, Esaulkov M N, Sidoro A Y, Shkurinov A P, Luo Q, Zhang X C 2015 40th International Conference on Infrared Milimeter and Terahertz Waves(IRMMW-THz) Fajardo, Aug. 23—28 2015, p2162

    [20]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [21]

    Vitale W A, Tamagnone M, Émond N, Drogoff B L, Capdevila S, Skrivervik A, Chaker M, Mosig J R, Ionescu A M 2017 Nature 7 41546

    [22]

    Hashemi M R, Yang S, Jarra M, Wang T Y, Sepulveda N 2015 IEEE International Symposium on Antennas and Propagation&USNC/URSI National Radio Science Meeting Vancouver, BC, Canada, July 19-24 2015 p77

    [23]

    Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Dev. Lett. 34 220Google Scholar

    [24]

    Valle J, Kalcheim Y, Trastoy J, Charnukha A, Basov D N, Schuller I K 2017 Phys. Rev. Applied 8 054041Google Scholar

    [25]

    Won S, Lee S Y, Hwang J, Park J, Seo H 2017 Electron. Mater. Lett. 14 14

    [26]

    Lu P, Qu Z M, Wang Q G, Wang Y, Cheng W 2018 e-Polymers 18 85Google Scholar

    [27]

    Qu Z M, Lu P, Yuan Y, Wang Q G 2018 IOP Conference Series: Materials Science and Engineering 301 012013Google Scholar

    [28]

    雷忆三, 孙丽君 2012 现代工业经济和信息化 18 74

    Lei Y S, Sun L J 2012 Modern Industrial Economy and Informationization 18 74

    [29]

    刘嘉玮, 王建江, 许宝才 2017 功能材料 48 10029

    Liu J W, Wang J J, Xu B C 2017 Journal of Functional Materals 48 10029

    [30]

    Stefanovich G, Pergament A, Kazakova E 2000 Tech. Phys. Lett. 26 478Google Scholar

    [31]

    Karakotsou C, Kalomiros J, Hanias M, Anagnostopoulos A, Spyridelis J 1992 Phys. Rev. B: Condens. Matter 45 11627Google Scholar

    [32]

    Baum P, Yang D S, Zewail A H 2007 Science 318 788Google Scholar

    [33]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B: Condens. Matter 84 241410Google Scholar

    [34]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101Google Scholar

    [35]

    Kim H T, Kim B J, Choi S, Chae B G, Lee Y W, Driscoll T, Qazilbash M M, Basov D 2010 J. Appl. Phys. 107 023702Google Scholar

    [36]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507Google Scholar

    [37]

    李昂, 王庆国, 王腾, 王研, 成伟 2016 兵器材料科学与工程 39 52

    Li A, Wang Q G, Wang T, Wang Y, Cheng W 2016 Ordnance Material Science and Engineering 39 52

    [38]

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2017 Advances in Engineering Research 110 129

    [39]

    Sun X N, Wang Q G, He C A, Qu Z M 2018 3rd International Conference on Materials Science Resource and Environment Engineering Chongqing, October 26-28, 2018 p030001-1

    [40]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459Google Scholar

    [41]

    Chu Q Q, Song Z Y, Liu Q H 2018 Appl. Phys. Express 11 082203

    [42]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [43]

    Cho C R, Cho S, Vadim S, Jung R, Yoo I 2006 Thin Solid Films 495 375Google Scholar

    [44]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 50

    [45]

    Hao R, Li Y, Liu F, Sun Y, Tang J, Chen P, Jiang W, Wu Z, Xu T, Fang B 2016 Infrared Phys. Tech. 75 82Google Scholar

    [46]

    He X F, Xu J, Xu X, Gu C, Chen F, Wu B, Wang C, Xing H, Chen X, Chu J 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [47]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76Google Scholar

    [48]

    Michael F B, Buckman A B, Rodger M W, Thierny L, Patrick G, Alain B 1995 J. Appl. Phys. 79 2404

    [49]

    山世浩, 王庆国, 曲兆明, 成伟, 李昂 2018 材料导报 32 870Google Scholar

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2018 Mater. Rev. 32 870Google Scholar

    [50]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 4 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety and EMC 4 14

    [51]

    陈飞, 黄康, 顾聪聪, 徐晓峰 2016 东华大学学报(自然科学版) 42 131Google Scholar

    Chen F, Huang K, Gu C C, Xu X F 2016 Journal of Donghua University, Natural Sciences 42 131Google Scholar

    [52]

    付学成, 李金华, 谢建生, 袁宁一 2010 红外技术 32 173Google Scholar

    Fu X C, Li J H, Xie J S, Yuan N Y 2010 Infrared Technology 32 173Google Scholar

    [53]

    Ji C H, Wu Z M, Wua X F, Wang J, Liu X C, Gou J, Zhou H X, Yao W, Jiang Y D 2018 Appl. Surf. Sci. 455 622Google Scholar

    [54]

    Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M 2013 Phys.Chem. Chem.Phys. 15 11723Google Scholar

    [55]

    吕维忠, 黄德贞, 罗仲宽, 刘 波 2015 深圳大学学报理工版 32 385

    Lv W Z, Huang D Z, Luo Z K, Liu B 2015 Journal of Shenzhen University Science and Engineering 32 385

    [56]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40Google Scholar

    [57]

    Jin P, Nakao S, Tanemura S 1998 Thin Solid Films 324 151Google Scholar

    [58]

    Zhang K K, Pan G Y, Dang Y Y, Qi W Y, Liu Q, Li Y B, Liu J C 2017 3rd Annual 2017 International Conference on Sustainable Development (ICSD2017) Tianjin, China, July 14-16, 2017 p164

    [59]

    Rajeswaran B, Umarji A M 2016 AIP Advances 6 035215Google Scholar

    [60]

    山世浩, 王庆国, 曲兆明 2017 兵器材料科学与工程 40 40

    Shan S H, Wang Q G, Qu Z M 2017 Ordnance Material Science and Engineering 40 40

    [61]

    Liao G M, Chen S, Fan L L, Chen Y L, Wang X Q, Ren H, Zhang Z M, Zou C W 2016 AIP Advances 6 045014−1

    [62]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 J. Adv. Mater. 25 6128Google Scholar

    [63]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [64]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B: Condens. Matter 92 155121Google Scholar

    [65]

    Bongjin S M, Yoon J, Mo S K, Chen K, Nobumichi T, Dejoie C, Kunz M, Liu Z, Park C, Moon K, Ju H 2013 Appl. Phys. Lett. 103 061902Google Scholar

    [66]

    Li D, Sharma A A, Gala D K, Shukla N, Paik H, Datta S, Schlom D G, Bain J A, Skowronski M 2016 ACS Appl. Mater. Inter. 8 12908Google Scholar

    [67]

    Stoliar P, Rozenberg M, Janod E, Corraze B, Tranchant J, Cario L 2014 Phys. Rev. B 90 045146Google Scholar

    [68]

    Gray A X, Hoffmann M C, Jeong J, Aetukuri N P, Zhu D, Hwang H Y, Brandt N C, Wen H, Sternbach A J, Bonetti S, Reid A H, Kukreja R, Graves C, Wang T, Granitzka P, Chen Z, Higley D J, Chase T, Jal E, Abreu E, Liu M K, Weng T C, Sokaras D, Nordlund D, Chollet M, Alonso-Mori R, Lemke H, Glownia J M, Trigo M, Zhu Y, Ohldag H, Freeland J W, Samant M G, Berakdar J, Averitt R D, Nelson K A, Parkin S S P, Dürr H A 2018 Phys. Rev. B: Condens. Matter 98 045104Google Scholar

    [69]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [70]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Sun J Y, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [71]

    梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达 2012 纳米技术与精密工程 10 160Google Scholar

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160Google Scholar

    [72]

    Matsunami D, Fujita A 2015 Appl. Phys. Lett. 106 4494

    [73]

    Shi Y, Chen L Q 2019 Phys. Rev. Appl. 11 014059Google Scholar

    [74]

    Zhang Y, Ramanathan S 2011 Solid-State Electron. 62 161Google Scholar

    [75]

    Gopalakrishnan G, Ruzmetov D, Ramanathan S 2009 J. Mater. Sci. Lett. 44 5345Google Scholar

    [76]

    Sakai J, Kurisu M 2008 Phys. Rev. B: Condens. Matter 78 033106Google Scholar

    [77]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K 2014 Appl. Phys. Lett. 104 221904Google Scholar

  • 图 1  VO2晶体结构图[32] (a) M相; (b) R相

    Fig. 1.  Crystal structure of VO2: (a) M phase; (b) R phase.

    图 2  电场作用下VO2薄膜中的电流变化曲线[8]

    Fig. 2.  Changes of currents by application ofthe electric field to VO2 thin films[8].

    图 3  VO2器件结构示意图 (a)平面结构[36]; (b)三端场效应管结构[7]; (c)三明治结构[45]

    Fig. 3.  Diagram of VO2 device structure: (a) Planar structure[36]; (b) three-terminal gated field effect switches[7]; (c) layered structure[45].

    图 4  量子阱结构示意图(内嵌图为量子阱结构的电容器件模型[46]

    Fig. 4.  Schematic of quantum well structure (inset shows a capacitance device model for the quantum well structure)[46].

    图 5  短脉冲响应曲线[36]

    Fig. 5.  Response curve of short pulse[36].

    图 6  (a) Sawyer-Tower测试电路; (b)方波脉冲电压与峰值电流关系图(内嵌图为加载7 V和10 V开关电压时的电压和电流曲线)[47]

    Fig. 6.  (a) Sawyer-Tower test circuit; (b) peak current as a function of square wave pulse voltage (the inset illustrates voltage and current curves using applied switching pulses of 7 V and 10 V)[47].

    图 7  VO2薄膜温度调控相变电场曲线图(电极间距5 mm)[60]

    Fig. 7.  MIT electric field curve controlled by temperature for VO2 thin film (the electrode spacing is 5 mm) [60].

    图 8  电场强度调控相变温度的关系图[60]

    Fig. 8.  MIT temperature curve controlled by electric field intensity[60].

    图 9  (a) VO2纳米纤维; (b)测试器件; (c)温度响应曲线[64]

    Fig. 9.  (a) VO2 nanofibers; (b) test device; (c) curve of temperature response.[64]

  • [1]

    Mott N F 1949 Proc. Phys. Soc. 62 416Google Scholar

    [2]

    Morin F 1959 Phys. Rev. Lett. 3 34Google Scholar

    [3]

    Fuls E, Hensler D, Ross A 1967 Appl. Phys. Lett. 10 199Google Scholar

    [4]

    陈培祖, 李毅, 蒋蔚, 徐婷婷, 伍征义, 张娇, 刘志敏 2017 纳米技术 42 387

    Chen P Z, Li Y, Jiang W, Xu T T, Wu Z Y, Zhang J, Liu Z M 2017 Semiconductor Technology 42 387

    [5]

    Tashman J, Lee J, Paik H, Moyer J, Misra R, Mundy J, Spila T, Merz T, Schubert J, Muller D 2014 Appl. Phys. Lett. 104 063104Google Scholar

    [6]

    Chae B G, Kim H T, Yun S J 2008 Electrochem. Solid-State Lett. 11 D53Google Scholar

    [7]

    Youn D H, Lee J W, Chae B G, Kim H T, Maeng S L, Kang K Y 2004 J. Appl. Phys. 95 1407Google Scholar

    [8]

    Chae B G, Youn D H, Kim H T, Maeng S, Kang K Y 2003 Mater. Sci. 103 11616

    [9]

    王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄 2018 物理学报 67 177201Google Scholar

    Wang Z L, Zhang Z H, Zhao Z, Shao R W, Sui M L 2018 Acta Phys. Sin. 67 177201Google Scholar

    [10]

    Golan G, Axelevitch A, Sigalov B, Gorenstein B 2003 Microelectron. J. 34 255Google Scholar

    [11]

    Chen S, Ma H, Dai J, Yi X 2007 Appl. Phys. Lett. 101 117

    [12]

    邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201Google Scholar

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201Google Scholar

    [13]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [14]

    罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 物理学报 65 047201Google Scholar

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201Google Scholar

    [15]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837Google Scholar

    [16]

    Anagnostou D E, Teeslink T S, Torres D, Sepúlveda N 2016 IEEE International Symposium on Antenna and Propagation Pajardo, June 26-July 1 2016, p1055

    [17]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv.Optical Mater. 2018 1701204

    [18]

    Anagnostou D E, Goussetis G, Torres D, Sepulveda N 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, Greece, May 01, 2017 p146

    [19]

    Solyankin P M, Esaulkov M N, Sidoro A Y, Shkurinov A P, Luo Q, Zhang X C 2015 40th International Conference on Infrared Milimeter and Terahertz Waves(IRMMW-THz) Fajardo, Aug. 23—28 2015, p2162

    [20]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [21]

    Vitale W A, Tamagnone M, Émond N, Drogoff B L, Capdevila S, Skrivervik A, Chaker M, Mosig J R, Ionescu A M 2017 Nature 7 41546

    [22]

    Hashemi M R, Yang S, Jarra M, Wang T Y, Sepulveda N 2015 IEEE International Symposium on Antennas and Propagation&USNC/URSI National Radio Science Meeting Vancouver, BC, Canada, July 19-24 2015 p77

    [23]

    Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Dev. Lett. 34 220Google Scholar

    [24]

    Valle J, Kalcheim Y, Trastoy J, Charnukha A, Basov D N, Schuller I K 2017 Phys. Rev. Applied 8 054041Google Scholar

    [25]

    Won S, Lee S Y, Hwang J, Park J, Seo H 2017 Electron. Mater. Lett. 14 14

    [26]

    Lu P, Qu Z M, Wang Q G, Wang Y, Cheng W 2018 e-Polymers 18 85Google Scholar

    [27]

    Qu Z M, Lu P, Yuan Y, Wang Q G 2018 IOP Conference Series: Materials Science and Engineering 301 012013Google Scholar

    [28]

    雷忆三, 孙丽君 2012 现代工业经济和信息化 18 74

    Lei Y S, Sun L J 2012 Modern Industrial Economy and Informationization 18 74

    [29]

    刘嘉玮, 王建江, 许宝才 2017 功能材料 48 10029

    Liu J W, Wang J J, Xu B C 2017 Journal of Functional Materals 48 10029

    [30]

    Stefanovich G, Pergament A, Kazakova E 2000 Tech. Phys. Lett. 26 478Google Scholar

    [31]

    Karakotsou C, Kalomiros J, Hanias M, Anagnostopoulos A, Spyridelis J 1992 Phys. Rev. B: Condens. Matter 45 11627Google Scholar

    [32]

    Baum P, Yang D S, Zewail A H 2007 Science 318 788Google Scholar

    [33]

    Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B: Condens. Matter 84 241410Google Scholar

    [34]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101Google Scholar

    [35]

    Kim H T, Kim B J, Choi S, Chae B G, Lee Y W, Driscoll T, Qazilbash M M, Basov D 2010 J. Appl. Phys. 107 023702Google Scholar

    [36]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507Google Scholar

    [37]

    李昂, 王庆国, 王腾, 王研, 成伟 2016 兵器材料科学与工程 39 52

    Li A, Wang Q G, Wang T, Wang Y, Cheng W 2016 Ordnance Material Science and Engineering 39 52

    [38]

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2017 Advances in Engineering Research 110 129

    [39]

    Sun X N, Wang Q G, He C A, Qu Z M 2018 3rd International Conference on Materials Science Resource and Environment Engineering Chongqing, October 26-28, 2018 p030001-1

    [40]

    Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459Google Scholar

    [41]

    Chu Q Q, Song Z Y, Liu Q H 2018 Appl. Phys. Express 11 082203

    [42]

    张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒 2017 物理学报 66 238101Google Scholar

    Zhang J, Li Y, Liu Z M, Li Z P, Huang Y Q, Pei J H, Fang B Y, Wang X H, Xiao H 2017 Acta Phys. Sin. 66 238101Google Scholar

    [43]

    Cho C R, Cho S, Vadim S, Jung R, Yoo I 2006 Thin Solid Films 495 375Google Scholar

    [44]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 50

    [45]

    Hao R, Li Y, Liu F, Sun Y, Tang J, Chen P, Jiang W, Wu Z, Xu T, Fang B 2016 Infrared Phys. Tech. 75 82Google Scholar

    [46]

    He X F, Xu J, Xu X, Gu C, Chen F, Wu B, Wang C, Xing H, Chen X, Chu J 2015 Appl. Phys. Lett. 106 093106Google Scholar

    [47]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76Google Scholar

    [48]

    Michael F B, Buckman A B, Rodger M W, Thierny L, Patrick G, Alain B 1995 J. Appl. Phys. 79 2404

    [49]

    山世浩, 王庆国, 曲兆明, 成伟, 李昂 2018 材料导报 32 870Google Scholar

    Shan S H, Wang Q G, Qu Z M, Cheng W, Li A 2018 Mater. Rev. 32 870Google Scholar

    [50]

    王庆国, 何长安, 曲兆明, 山世浩, 李昂, 成伟, 王妍 2018 安全与电磁兼容 4 14

    Wang Q G, He C A, Qu Z M, Shan S H, Li A, Cheng W, Wang Y 2018 Safety and EMC 4 14

    [51]

    陈飞, 黄康, 顾聪聪, 徐晓峰 2016 东华大学学报(自然科学版) 42 131Google Scholar

    Chen F, Huang K, Gu C C, Xu X F 2016 Journal of Donghua University, Natural Sciences 42 131Google Scholar

    [52]

    付学成, 李金华, 谢建生, 袁宁一 2010 红外技术 32 173Google Scholar

    Fu X C, Li J H, Xie J S, Yuan N Y 2010 Infrared Technology 32 173Google Scholar

    [53]

    Ji C H, Wu Z M, Wua X F, Wang J, Liu X C, Gou J, Zhou H X, Yao W, Jiang Y D 2018 Appl. Surf. Sci. 455 622Google Scholar

    [54]

    Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M 2013 Phys.Chem. Chem.Phys. 15 11723Google Scholar

    [55]

    吕维忠, 黄德贞, 罗仲宽, 刘 波 2015 深圳大学学报理工版 32 385

    Lv W Z, Huang D Z, Luo Z K, Liu B 2015 Journal of Shenzhen University Science and Engineering 32 385

    [56]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40Google Scholar

    [57]

    Jin P, Nakao S, Tanemura S 1998 Thin Solid Films 324 151Google Scholar

    [58]

    Zhang K K, Pan G Y, Dang Y Y, Qi W Y, Liu Q, Li Y B, Liu J C 2017 3rd Annual 2017 International Conference on Sustainable Development (ICSD2017) Tianjin, China, July 14-16, 2017 p164

    [59]

    Rajeswaran B, Umarji A M 2016 AIP Advances 6 035215Google Scholar

    [60]

    山世浩, 王庆国, 曲兆明 2017 兵器材料科学与工程 40 40

    Shan S H, Wang Q G, Qu Z M 2017 Ordnance Material Science and Engineering 40 40

    [61]

    Liao G M, Chen S, Fan L L, Chen Y L, Wang X Q, Ren H, Zhang Z M, Zou C W 2016 AIP Advances 6 045014−1

    [62]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 J. Adv. Mater. 25 6128Google Scholar

    [63]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [64]

    Singh S, Horrocks G, Marley P M, Shi Z, Banerjee S, Sambandamurthy G 2015 Phys. Rev. B: Condens. Matter 92 155121Google Scholar

    [65]

    Bongjin S M, Yoon J, Mo S K, Chen K, Nobumichi T, Dejoie C, Kunz M, Liu Z, Park C, Moon K, Ju H 2013 Appl. Phys. Lett. 103 061902Google Scholar

    [66]

    Li D, Sharma A A, Gala D K, Shukla N, Paik H, Datta S, Schlom D G, Bain J A, Skowronski M 2016 ACS Appl. Mater. Inter. 8 12908Google Scholar

    [67]

    Stoliar P, Rozenberg M, Janod E, Corraze B, Tranchant J, Cario L 2014 Phys. Rev. B 90 045146Google Scholar

    [68]

    Gray A X, Hoffmann M C, Jeong J, Aetukuri N P, Zhu D, Hwang H Y, Brandt N C, Wen H, Sternbach A J, Bonetti S, Reid A H, Kukreja R, Graves C, Wang T, Granitzka P, Chen Z, Higley D J, Chase T, Jal E, Abreu E, Liu M K, Weng T C, Sokaras D, Nordlund D, Chollet M, Alonso-Mori R, Lemke H, Glownia J M, Trigo M, Zhu Y, Ohldag H, Freeland J W, Samant M G, Berakdar J, Averitt R D, Nelson K A, Parkin S S P, Dürr H A 2018 Phys. Rev. B: Condens. Matter 98 045104Google Scholar

    [69]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902Google Scholar

    [70]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Sun J Y, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750Google Scholar

    [71]

    梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达 2012 纳米技术与精密工程 10 160Google Scholar

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160Google Scholar

    [72]

    Matsunami D, Fujita A 2015 Appl. Phys. Lett. 106 4494

    [73]

    Shi Y, Chen L Q 2019 Phys. Rev. Appl. 11 014059Google Scholar

    [74]

    Zhang Y, Ramanathan S 2011 Solid-State Electron. 62 161Google Scholar

    [75]

    Gopalakrishnan G, Ruzmetov D, Ramanathan S 2009 J. Mater. Sci. Lett. 44 5345Google Scholar

    [76]

    Sakai J, Kurisu M 2008 Phys. Rev. B: Condens. Matter 78 033106Google Scholar

    [77]

    Joushaghani A, Jeong J, Paradis S, Alain D, Stewart Aitchison J, Poon J K 2014 Appl. Phys. Lett. 104 221904Google Scholar

  • [1] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] 车佳殷, 陈超, 李卫艳, 李维, 陈彦军. 强场原子电离响应时间的研究进展. 物理学报, 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [3] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [6] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性. 物理学报, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [7] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [8] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [9] 顾艳妮, 吴小山. 氧空穴导致二氧化钒低温相带隙变窄. 物理学报, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [10] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展. 物理学报, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [11] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究. 物理学报, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [12] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [13] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [14] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [15] 郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗. 功率控制的强非局域空间光孤子短程相互作用. 物理学报, 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [16] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [17] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [18] 谈松林, 张 辉, 崔文东, 袁 圆, 张鹏翔. Ag掺杂的La0.67Pb0.33MnO3薄膜中激光感生热电电压效应. 物理学报, 2006, 55(8): 4226-4231. doi: 10.7498/aps.55.4226
    [19] 王利霞, 李建平, 何秀丽, 高晓光. 二氧化钒薄膜的低温制备及其性能研究. 物理学报, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
计量
  • 文章访问数:  12267
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-03-14
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回