搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学非互易的双路多信道全光操控

李鑫 解舒云 李林帆 周海涛 王丹 杨保东

引用本文:
Citation:

基于光学非互易的双路多信道全光操控

李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东

All-optical manipulation of two-way multi-channel based on optical nonreciprocity

Li Xin, Xie Shu-Yun, Li Lin-Fan, Zhou Hai-Tao, Wang Dan, Yang Bao-Dong
PDF
HTML
导出引用
  • 基于原子热运动的极化率-动量锁定特性及腔引起的强耦合特征, 设计并实现了一套无磁的光学互易-非互易传输转换方案. 理论和实验证实, 耦合场条件决定了系统的非互易性. 在单束行波场作用下, 由于多普勒效应, 热原子中的非互易性取决于耦合场的传播方向. 因此, 通过改变对向耦合场的开闭, 可控制基于内腔电磁诱导透明的双路单信道光学非互易传输. 而在两束对向耦合场同时作用下, 腔透射由单暗态转变为双暗态极子峰, 其互易性输出依赖于两束耦合场之间的频率差. 于是通过调谐频率差可实现基于双暗态极子峰的双路多信道互易-非互易传输调控.
    Owing to the potential applications in all-optical quantum information processing and quantum optical networks, magnet-free optical non-reciprocity transmission has attracted great interest and has been studied in many fields, such as parity-time-symmetry enhanced nonlinearity, optomechanical systems, photonic crystal, cold atomic Bragg lattices, chiral quantum optics, and hot atoms. In particular, the random thermal motion of hot atoms can be a useful resource to realize optical non-reciprocity. Here in this work, based on the susceptibility-momentum-locking of atomic thermal motion and the strong coupling characteristics of cavities, a magnetic-free optical reciprocity-nonreciprocity transmission conversion scheme is designed and realized through the atom-cavity compound system. Theoretical and experimental analysis show that the coupling field conditions determine the nonreciprocity of the system. Under the action of single traveling-wave field, the nonreciprocity in hot atoms depends on the propagation direction of the coupling field due to the Doppler effect. Therefore, by changing the opening and closing of the opposite coupling field, the two-way single channel optical nonreciprocal transmission based on intracavity electromagnetically induced transparency can be controlled. When the two coupling fields propagate simultaneously in the opposite directions, however, the cavity transmission changes from single-dark-state to double-dark-state peaks, in which the reciprocity outputs depend on the frequency difference between the two coupling fields. By tuning the frequency difference, the two-way multi-channel reciprocal-nonreciprocal transmission regulation based on double dark polar peaks can be realized. The study can be applied to all-optical quantum devices and quantum information processing, such as optical transistors, optical switching and routing, and quantum gate manipulation.
      通信作者: 周海涛, zht007@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975102, 11704235)、山西省自然科学基金(批准号: 20210302123437)、山西省青年科技研究基金(批准号: 201901D211166)和山西省高等学校科技创新项目(批准号: 2020L0038)资助的课题.
      Corresponding author: Zhou Hai-Tao, zht007@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975102, 11704235), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201901D211166), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2020L0038).
    [1]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [2]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [3]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [4]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [5]

    Ruesink F, Mathew J P, Miri M A, Verhagen E, Alù A 2018 Nat. Commun. 9 1798Google Scholar

    [6]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [7]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

    [8]

    Lépinay L M, Ockeloen-Korppi C F, Malz D, Sillanpää M A 2020 Phys. Rev. Lett. 125 023603Google Scholar

    [9]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [10]

    Ramezani H, Jha P K, Wang Y, Zhang X 2018 Phys. Rev. Lett. 120 043901Google Scholar

    [11]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [12]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [13]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [14]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602Google Scholar

    [15]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [16]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [17]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [19]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [20]

    Song K S, Im S J, Pae J S, Ri C S, Ho K S, Kim C S, Han Y H 2020 Phys. Rev. B 102 115435Google Scholar

    [21]

    Zhang J X, Zhou H T, Wang D W, Zhu S Y 2011 Phys. Rev. A 83 053841Google Scholar

    [22]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Kapale K T, Agarwal G S, Scully M O 2005 Phys. Rev. A 72 052304Google Scholar

    [24]

    Vo C, Riedl S, Baur S, Rempe G, Dürr S 2012 Phys. Rev. Lett. 109 263602Google Scholar

    [25]

    He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429Google Scholar

    [26]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 89 033813Google Scholar

    [27]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [28]

    Li R B, Deng L, Hagley E W 2014 Phys. Rev. A 90 063806Google Scholar

    [29]

    Knutson E M, Cross J S, Wyllie S, Glasser R T 2020 Opt. Express 28 22748Google Scholar

    [30]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [31]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [32]

    Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Garmichael H J, Mossberg T W 1990 Phys. Rev. Lett. 64 2499Google Scholar

    [33]

    Sheng J T, Xiao M 2013 Laser Phys. Lett. 10 055402Google Scholar

    [34]

    Gripp J, Mielke S L, Orozco L A 1996 Phys. Rev. A 54 R3746Google Scholar

  • 图 1  (a) 实验装置和(b) 实验能级示意图

    Fig. 1.  Schematic diagram of experimental setup (a) and energy levels (b).

    图 2  理论模拟注入信号光s1光(红色实线)和s2光(蓝色虚线)的色散 χ'、吸收χ'' 及腔透射谱T 随信号光频率失谐的变化 (a), (b)只有c1光作用时的χ'χ''; (d), (e) 只有c2作用时的χ'χ''; (c), (f) 分别对应只有c1光和只有c2作用时的T. 在计算中参数设置为: (a)—(c)中, $ {\varOmega _{{c_1}}} = 20{\text{ MHz, }}{\varOmega _{{c_2}}} = 0 $; (d)—(f)中, ${\varOmega _{{c_1}}} = 0,\;{\varOmega _{{c_2}}} = 20{\text{ MHz}}$. 其他实验参数为: r = γin = 0.9, γca = 14.4 MHz, γab = 0.3 MHz, L = 526 mm, l = 75 mm, $ {\varDelta _{{c_1}}} = {\varDelta _{{c_2}}} = {\varDelta _{\text{q}}} = 0 $

    Fig. 2.  Theoretical plots of the dispersion χ', absorption χ'' and cavity transmission T of the input s1 (red solid lines) and input s2 (blue dashed lines) versus signal frequency detuning: (a), (b) χ' and χ'' for only c1 used; (d), (e) χ' and χ'' for only c2 used; (c), (f) T corresponding to only c1 and only c2 corresponding to panel (a), (b) and (d), (e), respectively. The parameters used in the calculation are $ {\varOmega _{{c_1}}} = 20{\text{ MHz, }}{\varOmega _{{c_2}}} = 0 $ for panel (a)–(c); ${\varOmega _{{c_1}}} = 0{, }~{\varOmega _{{c_2}}} = 20{\text{ MHz}}$for panel (d)–(f). The other parameters are r = γin = 0.9, γca = 14.4 MHz, γab = 0.3 MHz, L = 526 mm, l = 75 mm, $ {\varDelta _{{c_1}}} = {\varDelta _{{c_2}}} = {\varDelta _{\text{q}}} = 0 $.

    图 3  理论模拟了当c1光和c2光同时作用时, 不同频差δcs1光(红色实线)和s2光(蓝色虚线)的色散χ'、吸收χ''及腔透射谱T (a)—(c) δc = 0; (d)—(f) δc = –20 MHz; (g)—(i) δc = –40 MHz. 主要计算参数为$ {\varOmega _{{c_1}}} = {\varOmega _{{c_2}}} = 20{\text{ MHz}} $, 其他参数与图2中的相同

    Fig. 3.  Theoretical plots of χ', χ'' and T of the input s1 (red solid lines) and input s2 (blue dashed lines) versus signal frequency detuning for different frequency difference δc when coupling lights c1 and c2 are used simultaneously: (a)–(c) δc = 0; (d)–(f) δc = –20 MHz; (g)–(i) δc = –40 MHz. The parameters used in the calculation are $ {\varOmega _{{c_1}}} = {\varOmega _{{c_2}}} = 20{\text{ MHz}} $, and other parameters are the same as in Fig. 2.

    图 4  (a), (c) 实验测量了只有c1光和c2光作用下的腔透射谱; (b), (d) 当c2光为脉冲光时在原子共振跃迁中心(Δs = 0)的腔透射强度. (1) 代表s1光的腔透射(红色线), (2) 代表s2光的腔透射(蓝色线), (3) 代表c1光强度(灰色线)和(4)代表c2光强度(黑色线). 主要实验参数为$ {P_{{c_1}}} = {P_{{c_2}}} = 10\;{\text{mW}} $, $ {P_{{s_1}}} = {P_{{s_2}}} = 1.5{\text{ mW}} $, TCs = 28.5 °C, $ {\delta _c} = {\varDelta _{{c_1}}} = 0 $

    Fig. 4.  (a), (c) Experimental measured cavity transmission for only light c1 (a) and light c2 (c) used. (b), (d) The transmission intensity at the atom resonance center (Δs = 0) when light c2 is as pulsed light. Red curves (1) are the cavity transmission of light s1, blue curves (2) are those of light s2, gray lines (3) and black lines (4) are the intensity of lights c1 and c2, respectively. The main experimental parameters are:$ {P_{{c_1}}} = {P_{{c_2}}} = 10{\text{ mW}} $, $ {P_{{s_1}}} = {P_{{s_2}}} = 1.5{\text{ mW}} $, TCs = 28.5 °C, $ {\delta _c} = {\varDelta _{{c_1}}} = 0 $.

    图 5  实验测量了c1光和c2光同时作用下的腔透射谱, 其中主要实验参量为(a) $ {\varDelta _{{c_1}}} = {\delta _c} = 0 $; (b) $ {\varDelta _{{c_1}}} = 10{\text{ MHz, }}{\delta _c} = - 20{\text{ MHz}} $; (c) $ {\varDelta _{{c_1}}} = 20{\text{ MHz, }}{\delta _c} = - 40{\text{ MHz}} $. 其他参数与图4相同

    Fig. 5.  Experimental measured cavity transmission for lights c1 and c2 simultaneously used. The main experimental parameters are: (a) $ {\varDelta _{{c_1}}} = {\delta _c} = 0 $; (b) $ {\varDelta _{{c_1}}} = 10{\text{ MHz, }}{\delta _c} = - 20{\text{ MHz}} $; (c) $ {\varDelta _{{c_1}}} = 20{\text{ MHz, }}{\delta _c} = - 40{\text{ MHz}} $. The other parameters are the same as in Fig. 4.

    表 1  不同δc下双暗态极子峰的输出真值表

    Table 1.  Output truth table of double dark-state peaks under different δc.


    δc = 0δc = –δδc = –2δ
    Δs = –δ(δ)Δs = –2δ(0)Δs = –δ(δ)Δs = –3δΔs = –δΔs =δ
    S1-in001100110011001100110011
    S2-in010101010101010101010101
    S1-out001100000011000000110011
    S2-out010101010000010101010000
    S = S1-out+ S2-out011101010011010101110011
    下载: 导出CSV
  • [1]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [2]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [3]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [4]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [5]

    Ruesink F, Mathew J P, Miri M A, Verhagen E, Alù A 2018 Nat. Commun. 9 1798Google Scholar

    [6]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [7]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

    [8]

    Lépinay L M, Ockeloen-Korppi C F, Malz D, Sillanpää M A 2020 Phys. Rev. Lett. 125 023603Google Scholar

    [9]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [10]

    Ramezani H, Jha P K, Wang Y, Zhang X 2018 Phys. Rev. Lett. 120 043901Google Scholar

    [11]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [12]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [13]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [14]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602Google Scholar

    [15]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [16]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [17]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [19]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [20]

    Song K S, Im S J, Pae J S, Ri C S, Ho K S, Kim C S, Han Y H 2020 Phys. Rev. B 102 115435Google Scholar

    [21]

    Zhang J X, Zhou H T, Wang D W, Zhu S Y 2011 Phys. Rev. A 83 053841Google Scholar

    [22]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Kapale K T, Agarwal G S, Scully M O 2005 Phys. Rev. A 72 052304Google Scholar

    [24]

    Vo C, Riedl S, Baur S, Rempe G, Dürr S 2012 Phys. Rev. Lett. 109 263602Google Scholar

    [25]

    He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429Google Scholar

    [26]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 89 033813Google Scholar

    [27]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [28]

    Li R B, Deng L, Hagley E W 2014 Phys. Rev. A 90 063806Google Scholar

    [29]

    Knutson E M, Cross J S, Wyllie S, Glasser R T 2020 Opt. Express 28 22748Google Scholar

    [30]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [31]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [32]

    Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Garmichael H J, Mossberg T W 1990 Phys. Rev. Lett. 64 2499Google Scholar

    [33]

    Sheng J T, Xiao M 2013 Laser Phys. Lett. 10 055402Google Scholar

    [34]

    Gripp J, Mielke S L, Orozco L A 1996 Phys. Rev. A 54 R3746Google Scholar

  • [1] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [2] 刘妮, 马硕, 梁九卿. 双腔双光力系统中的光非互易传输特性. 物理学报, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [3] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [4] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [5] 逯志宇, 任衍青, 巴斌, 王大鸣, 张杰. 基于分段信号相关累加的变速度多站联合直接定位方法. 物理学报, 2017, 66(2): 020503. doi: 10.7498/aps.66.020503
    [6] 唐智灵, 于立娟, 李思敏. 基于高速移动通信的虚拟天线阵列理论研究. 物理学报, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [7] 廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华. 一种全光开关及任意比能量输出光分束器的设计. 物理学报, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [8] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [10] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析. 物理学报, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [11] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [12] 郑加金, 陆云清, 李培丽, 陈陶. 激发态质子转移分子2-(2'-羟基苯基)苯并噻唑溶液的全光开关效应. 物理学报, 2010, 59(9): 6626-6631. doi: 10.7498/aps.59.6626
    [13] 刘启明, 何漩, 干福熹, 钱士雄. 硫系非晶半导体薄膜中的超快光 Kerr效应. 物理学报, 2009, 58(2): 1002-1006. doi: 10.7498/aps.58.1002
    [14] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [15] 刘建国, 开桂云, 薛力芳, 张春书, 刘艳格, 王 志, 郭宏雷, 李 燕, 孙婷婷, 袁树忠, 董孝义. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关. 物理学报, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [16] 许超彬, 郭 旗. (1+2)维强非局域空间光孤子的相互作用. 物理学报, 2005, 54(11): 5194-5200. doi: 10.7498/aps.54.5194
    [17] 王晓生, 佘卫龙. 双色光光伏空间孤子的形成条件及其应用. 物理学报, 2003, 52(3): 595-599. doi: 10.7498/aps.52.595
    [18] 刘雪明, 张明德, 孙小菡, 刘琳. 一种基于二阶非线性级联的新颖全光开关. 物理学报, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [19] 佘卫龙, 李荣基. 全光双准稳态空间孤子. 物理学报, 2001, 50(5): 886-891. doi: 10.7498/aps.50.886
    [20] 杨淼, 司金海, 王玉晓, 李淳飞. 基于激发态非线性折射效应的全光开关与光限幅. 物理学报, 1995, 44(3): 419-426. doi: 10.7498/aps.44.419
计量
  • 文章访问数:  3978
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-05-06
  • 上网日期:  2022-09-05
  • 刊出日期:  2022-09-20

/

返回文章
返回