搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

易面型Y2Co17稀土软磁复合材料的雷达波吸收和带宽机理

涂成发 郑祖应 乔亮 郝宏波 马云国 孙哲 王浩 王涛 李发伸

引用本文:
Citation:

易面型Y2Co17稀土软磁复合材料的雷达波吸收和带宽机理

涂成发, 郑祖应, 乔亮, 郝宏波, 马云国, 孙哲, 王浩, 王涛, 李发伸

Mechanism of radar wave absorption and bandwidth for easy-plane Y2Co17 rare earth soft magnetic composites

Tu Cheng-Fa, Zheng Zu-Ying, Qiao Liang, Hao Hong-Bo, Ma Yun-Guo, Sun Zhe, Wang Hao, Wang Tao, Li Fa-Shen
PDF
HTML
导出引用
  • 吸波材料广泛应用于国防雷达波隐身和民用电磁屏蔽领域, 吸波材料的吸波性能由复合材料的电磁参数和厚度共同决定. 在实际加工过程中, 吸波材料的反射损耗峰强度随厚度的变化关系和带宽的理论设计与工程实践存在一定偏离, 并且反射损耗吸收峰的强度随厚度变化规律和反射损耗吸收峰的带宽机理研究鲜有报道, 因此, 对吸波材料的反射损耗峰的强度随厚度的变化关系及带宽机理的深入性原理研究有着迫切的需求. 本文通过共沉淀-还原扩散工艺制备易面型Y2Co17/聚氨酯(PU)软磁复合材料并测量得到电磁参数, 基于界面反射模型研究了雷达波在吸波涂层空气界面的反射性能, 确定了匹配阻抗和吸波材料匹配厚度的依赖关系, 进一步利用匹配阻抗参数设计出4—18 GHz内不同厚度的吸波复合材料反射损耗峰强度持续稳定地小于 –10 dB, 6—18 GHz内不同厚度的吸波复合材料反射损耗峰强度持续稳定地小于 –20 dB. 根据界面反射模型对匹配厚度处反射损耗峰的带宽进行了深入的原理性讨论, 理论计算与测量值吻合.
    Wave absorbing materials are widely used to prevent military equipment from being detected by radar wave and also serve as civil electromagnetic shielding. The absorbing properties of wave absorbing materials are determined by a combination of the electromagnetic parameters and the thickness of the composite material. In the actual case, the theoretically designed reflection loss peak intensity and the bandwidth of wave absorbing materials deviate from the engineered values. There are few reports on the mechanism about the variation of the intensity of the reflection loss absorption peak with thickness and the bandwidth of the reflection loss absorption peak. In this work, based on an interfacial reflection model, the reflective properties of radar wave at the air interface of the absorbing coating are investigated. The dependence of the matching impedance on the matching thickness of the absorbing material is determined, and the matching impedance parameters are further used to design the absorbing composites, which exhibit excellent microwave absorption properties, i.e. an average value of reflection loss is below –10 dB at 4–18 GHz in different thickness wave absorbing materials, and an average value of reflection loss is below –20 dB at 6–18 GHz in different thickness wave absorbing materials. The bandwidth of the reflection loss peak at the matched thickness is discussed in depth in principle based on the interface reflection model, and the theoretical calculations accord with the experimental results.
      通信作者: 乔亮, qiaoliang@lzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3501300)、国家自然科学基金(批准号: 51731001)和白云鄂博稀土资源研究与综合利用国家重点实验室重点研发项目资助的课题.
      Corresponding author: Qiao Liang, qiaoliang@lzu.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2021YFB3501300), the National Natural Science Foundation of China (Grant No. 51731001), and the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization's Key Research and Development Projects, China.
    [1]

    Lv H, Yang Z, Liu B, Wu G, Lou Z, Fei B, Wu R 2021 Nat. Commun. 12 834Google Scholar

    [2]

    Guan B, Ding D, Wang L, Wu J, Xiong R 2017 Mater. Res. Express 4 056103Google Scholar

    [3]

    Qu B, Zhu C, Li C, Zhang X, Chen Y 2016 ACS Appl. Mater. Interfaces 8 3730Google Scholar

    [4]

    Gao S T, Zhang Y C, Xing H L, Li H X 2020 Chem. Eng. J. 387 124149Google Scholar

    [5]

    Wang Z, Cheng Z, Fang C, Hou X, Xie L 2020 Compos. Part A Appl. Sci. Manuf. 136 105956Google Scholar

    [6]

    Zhang H, Jia Z, Feng A, Zhou Z, Zhang C, Wang K, Liu N, Wu G 2020 Compos. Commun. 19 42Google Scholar

    [7]

    Wang F, Wang N, Han X, Liu D, Wang Y, Cui L, Xu P, Du Y 2019 Carbon 145 701Google Scholar

    [8]

    Wang P, Zhang J, Wang G, Duan B, Wang T, Li F 2020 Appl. Phys. Lett. 116 112403Google Scholar

    [9]

    Han R, Yi H B, Zuo W L, Wang T, Qiao L, Li F S 2012 J. Magn. Magn. Mater. 324 2488Google Scholar

    [10]

    Wu P, Zhang Y, Hao H, Qiao L, Liu X, Wang T, Li F 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [11]

    Qiao G, Hu Q, Zhang P, Yang W, Liu Z, Liu S, Wang C, Yang J 2020 J. Alloys Compd. 825 154179Google Scholar

    [12]

    Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y, Yang J B 2018 Acta Materialia 145 331Google Scholar

    [13]

    Yan F, Zong Y, Zhao C, Tan G, Sun Y, Li X, Ren Z, Zheng X 2018 J. Alloys Compd. 742 928Google Scholar

    [14]

    Wang Y, Liu Z, Zhang P, Cai K, Yang W, Han J, Liu S, Wang C, Zou R, Yang J 2021 AIP Adv. 11 015237Google Scholar

    [15]

    Zhuang X, Tan G, Ning M, Qi C, Ge X, Yang Z, Man Q 2021 J. Alloys Compd. 883 160835Google Scholar

    [16]

    Gu X, Tan G, Chen S, Man Q, Chang C, Wang X, Li R W, Che S, Jiang L 2017 J. Magn. Magn. Mater. 424 39Google Scholar

    [17]

    Qiao L, Wang T, Mei Z L, Li X L, Sui W B, Tang L Y, Li F S 2016 Chin. Phys. Lett. 33 027502Google Scholar

    [18]

    Wang T, Han R, Tan G, Wei J, Qiao L, Li F 2012 J. Appl. Phys. 112 104903Google Scholar

    [19]

    Wang T, Wang H D, Tan G G, Li W, Qiao L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [20]

    Liu J R, Itoh M, Machida K I 2003 Appl. Phys. Lett. 83 4017Google Scholar

    [21]

    Singh P, Babbar V K, Razdan A, Puri R K, Goel T C 2000 J. Appl. Phys. 87 4362Google Scholar

  • 图 1  工艺流程示意图(RL表示反射损耗)

    Fig. 1.  Sketch map of workmanship (RL, reflection loss).

    图 2  Y2Co17样品XRD图谱

    Fig. 2.  XRD patterns of Y2Co17

    图 3  (a) Y2Co17合金磁粉的磁滞回线; (b) 体积分数为30%的Y2Co17/PU复合片状样品的面内、面外磁滞回线

    Fig. 3.  (a) Hysteresis loop of the Y2Co17 alloy magnetic powder; (b) in-plane and out-plane hysteresis loop of the Y2Co17 /PU with a volume fraction of 30%.

    图 4  (a) Y2Co17/PU复合材料的磁导率; (b) Y2Co17/PU复合材料的介电常数

    Fig. 4.  (a) Complex permeability of Y2Co17/PU composites; (b) complex permittivity of Y2Co17/PU composites.

    图 5  (a) 界面反射相消模型示意图; (b) 电磁波透过物体示意图; (c) Y2Co17/PU-25%在不同厚度下吸收峰所对应的频点

    Fig. 5.  (a) Schematic diagram of interface reflection cancellation model; (b) schematic diagram of electromagnetic wave passing through objects; (c) frequency points corresponding to absorption peaks at different thicknesses of Y2Co17/PU-25%.

    图 6  Y2Co17/PU-15%复合物的 (a) RL峰的带宽图和 (b) 四分之一波长的频率依赖性

    Fig. 6.  (a) Scheme of bandwidth of RL peak and (b) frequency dependent of quarter-wavelength for Y2Co17/PU-15% composites.

    图 7  (a) Y2Co17/PU-15%复合材料的磁导率; (b) Y2Co17/ PU-15%复合材料的介电常数

    Fig. 7.  (a) Complex permeability of Y2Co17/PU composites; (b) complex permittivity of Y2Co17/PU composites.

    图 8  Y2Co17磁粉复合材料的零反射参数(fm, tm)与浓度关系

    Fig. 8.  Relationship between zero reflection parameters (fm, tm) and volume concentration of Y2Co17 magnetic powder composites.

    图 9  (a) Y2Co17/PU-15%四分之一波长厚度与频率的关系; (b) Y2Co17/PU-15%阻抗匹配与厚度的关系 ; (c), (d) Y2Co17-15%在不同厚度下吸收峰

    Fig. 9.  (a) Quarter wavelength thickness as a function of frequency of Y2Co17-15%; (b) impedance matching versus thickness of Y2Co17-15%; (c), (d) absorption peaks at different thicknesses of Y2Co17-15%.

    图 10  指定点(RL)1 = –10 dB时, Y2Co17/PU-15%带宽的测量值和计算值随频率的变化

    Fig. 10.  Measured and calculated bandwidth at (RL)1 = –10 dB for Y2Co17/PU-15% composite under various frequencies.

    表 1  Y2Co17磁粉复合物的零反射条件与体积浓度的关系

    Table 1.  Relationship between zero reflection condition and volume concentration of Y2Co17 magnetic powder composites.

    Vc/%零反射条件$\sqrt{ {\varepsilon }_{\mathrm{r} }{\mu }_{\mathrm{r} } }$$\sqrt{ {\varepsilon }_{\mathrm{r} }/{\mu }_{\mathrm{r} } }$RL/dB
    fm/GHztm/mm
    1518.001.133.663.72–59.60
    203.143.887.013.72–52.00
    251.853.9510.204.04–60.70
    300.9955.0215.004.95–40.56
    下载: 导出CSV

    表 2  指定点(RL)1 = –10 dB时, 带宽的测量值和计算值

    Table 2.  Calculated and measured values of bandwidth for the specified point (RL)1 = –10 dB.

    f/
    GHz
    t/
    mm
    (RL)min/
    dB
    $\varPi$$\left| \dfrac{\mathrm{d}\Delta \theta}{ \mathrm{d}f} \right|$$\varDelta_{计算}$/
    GHz
    $\varDelta_{测量} $/
    GHz
    6.62.4–38.090.540.542.882.50
    6.02.7–27.40.560.632.342.01
    5.3363–23.040.580.721.941.78
    4.7993.3–20.280.600.781.701.68
    4.353.6–18.420.620.881.421.41
    4.033.9–17.260.640.981.221.25
    3.724.2–16.010.661.11.020.99
    3.414.5–15.260.671.170.920.92
    下载: 导出CSV
  • [1]

    Lv H, Yang Z, Liu B, Wu G, Lou Z, Fei B, Wu R 2021 Nat. Commun. 12 834Google Scholar

    [2]

    Guan B, Ding D, Wang L, Wu J, Xiong R 2017 Mater. Res. Express 4 056103Google Scholar

    [3]

    Qu B, Zhu C, Li C, Zhang X, Chen Y 2016 ACS Appl. Mater. Interfaces 8 3730Google Scholar

    [4]

    Gao S T, Zhang Y C, Xing H L, Li H X 2020 Chem. Eng. J. 387 124149Google Scholar

    [5]

    Wang Z, Cheng Z, Fang C, Hou X, Xie L 2020 Compos. Part A Appl. Sci. Manuf. 136 105956Google Scholar

    [6]

    Zhang H, Jia Z, Feng A, Zhou Z, Zhang C, Wang K, Liu N, Wu G 2020 Compos. Commun. 19 42Google Scholar

    [7]

    Wang F, Wang N, Han X, Liu D, Wang Y, Cui L, Xu P, Du Y 2019 Carbon 145 701Google Scholar

    [8]

    Wang P, Zhang J, Wang G, Duan B, Wang T, Li F 2020 Appl. Phys. Lett. 116 112403Google Scholar

    [9]

    Han R, Yi H B, Zuo W L, Wang T, Qiao L, Li F S 2012 J. Magn. Magn. Mater. 324 2488Google Scholar

    [10]

    Wu P, Zhang Y, Hao H, Qiao L, Liu X, Wang T, Li F 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [11]

    Qiao G, Hu Q, Zhang P, Yang W, Liu Z, Liu S, Wang C, Yang J 2020 J. Alloys Compd. 825 154179Google Scholar

    [12]

    Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y, Yang J B 2018 Acta Materialia 145 331Google Scholar

    [13]

    Yan F, Zong Y, Zhao C, Tan G, Sun Y, Li X, Ren Z, Zheng X 2018 J. Alloys Compd. 742 928Google Scholar

    [14]

    Wang Y, Liu Z, Zhang P, Cai K, Yang W, Han J, Liu S, Wang C, Zou R, Yang J 2021 AIP Adv. 11 015237Google Scholar

    [15]

    Zhuang X, Tan G, Ning M, Qi C, Ge X, Yang Z, Man Q 2021 J. Alloys Compd. 883 160835Google Scholar

    [16]

    Gu X, Tan G, Chen S, Man Q, Chang C, Wang X, Li R W, Che S, Jiang L 2017 J. Magn. Magn. Mater. 424 39Google Scholar

    [17]

    Qiao L, Wang T, Mei Z L, Li X L, Sui W B, Tang L Y, Li F S 2016 Chin. Phys. Lett. 33 027502Google Scholar

    [18]

    Wang T, Han R, Tan G, Wei J, Qiao L, Li F 2012 J. Appl. Phys. 112 104903Google Scholar

    [19]

    Wang T, Wang H D, Tan G G, Li W, Qiao L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [20]

    Liu J R, Itoh M, Machida K I 2003 Appl. Phys. Lett. 83 4017Google Scholar

    [21]

    Singh P, Babbar V K, Razdan A, Puri R K, Goel T C 2000 J. Appl. Phys. 87 4362Google Scholar

  • [1] 王文彪, 吴鹏, 乔亮, 吴伟, 涂成发, 杨晟宇, 李发伸. γ'-Fe4N软磁复合材料的磁性及损耗特性. 物理学报, 2023, 72(13): 137501. doi: 10.7498/aps.72.20222352
    [2] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [3] 孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾. 用于相位突变界面的广义的反射定律和折射定律. 物理学报, 2013, 62(10): 104201. doi: 10.7498/aps.62.104201
    [4] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究. 物理学报, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [5] 黄虎. 直立堤前部分反射短峰波演变的三个无穷序列. 物理学报, 2011, 60(7): 074701. doi: 10.7498/aps.60.074701
    [6] 黄虎, 杨丽, 夏应波. 一般反射短峰波的普适法则——倍频率通向短峰波. 物理学报, 2010, 59(4): 2182-2186. doi: 10.7498/aps.59.2182
    [7] 张碧星, 王文龙. 凹面相控阵聚焦声场在液固界面上的反射和折射. 物理学报, 2008, 57(6): 3613-3619. doi: 10.7498/aps.57.3613
    [8] 黄朝强, 陈 波, 李新喜, V. G. Syromyatnikov, N. K. Pleshanov. CoFe/TiZr多层膜材料界面结构与性能的极化中子反射研究. 物理学报, 2008, 57(1): 364-370. doi: 10.7498/aps.57.364
    [9] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [10] 石 刚, 岑洁萍, 樊 莉, 刘拥军. 左右手系材料界面处全反射行为的特性. 物理学报, 2007, 56(8): 4653-4656. doi: 10.7498/aps.56.4653
    [11] 席再军, 肖体乔, 张增艳, 陈 敏, 余笑寒, 徐洪杰. 样品内部非平行界面的反射式terahertz波层析研究. 物理学报, 2006, 55(5): 2293-2299. doi: 10.7498/aps.55.2293
    [12] 朱鸿茂, 郑伟花, 黄忠文, 朱 成. 运动界面上反射超声散斑空间运动的研究. 物理学报, 2004, 53(8): 2614-2620. doi: 10.7498/aps.53.2614
    [13] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究. 物理学报, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [14] 贺奇才, 黄耀熊. 平面电磁波在任意方向运动的介质-介质界面上的反射和透射. 物理学报, 1999, 48(6): 1044-1051. doi: 10.7498/aps.48.1044
    [15] 董正超. 磁多层金属系统的界面反射效应. 物理学报, 1999, 48(11): 2116-2124. doi: 10.7498/aps.48.2116
    [16] 屈卫星, 余玮, 徐至展. s偏振电磁波在运动的稀薄等离子体界面上的反射与透射. 物理学报, 1997, 46(4): 666-671. doi: 10.7498/aps.46.666
    [17] 潘士宏, 王忠和, 黄硕, 张存洲, 周小川, 徐贵昌, 蒋健, 陈忠圭. 掺杂分子束外延GaAs薄膜表面和GaAs-GaAs界面的光反射调制谱. 物理学报, 1993, 42(11): 1879-1886. doi: 10.7498/aps.42.1879
    [18] 陈陆君, 梁昌洪, 吴鸿适. 光纤孤子在媒质突变界面的反射与透射. 物理学报, 1992, 41(2): 244-252. doi: 10.7498/aps.41.244
    [19] 郑晓瑜, 钱祖文. 有限振幅声波在平面界面上的反射和折射. 物理学报, 1990, 39(1): 89-93. doi: 10.7498/aps.39.89
    [20] 张合义, 郭平, 何雪华. 玻璃与液晶非线性光学界面反射特性的研究. 物理学报, 1989, 38(10): 1593-1600. doi: 10.7498/aps.38.1593
计量
  • 文章访问数:  4410
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-04
  • 上网日期:  2022-08-31
  • 刊出日期:  2022-09-20

/

返回文章
返回