搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温下铯原子体系光学非互易调控实验研究

张慧玲 谢中柱 郝佳瑞 房勇

引用本文:
Citation:

室温下铯原子体系光学非互易调控实验研究

张慧玲, 谢中柱, 郝佳瑞, 房勇

Experimental research on optical nonreciprocal control of cesium atomic systems at room temperature

ZHANG Huiling, XIE Zhongzhu, HAO Jiarui, FANG Yong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 无磁有源光学非互易器件, 有助于在不使用外磁场的情况下构建针对弱信号的光信息处理网络. 本文在铯原子气体中通过激光激发Λ型三能级原子结构, 实验上实现电磁诱导透明现象的非互易传输, 得到的光信号隔离可用于构建无磁有源光学非互易器件. 在简并跃迁能级条件下, 通过调节探测光和耦合光功率以及失谐进行了室温下铯原子体系的光学非互易隔离比调控实验规律的研究, 分析了可调参量对非互易隔离比的影响, 得到的最大隔离比可达26 dB. 为探索具有高隔离比的高性能非互易器件提供了一定的依据, 为设计新一代光学设备提供了新思路.
    Non-magnetic optical non-reciprocal devices are conducive to constructing optical information processing networks for weak signals without using any external magnetic field. In this work, the non-reciprocal transmission of electromagnetically induced transparency (EIT) in a cesium atomic gas through laser exciting a Λ-type three-level atomic system is observed experimentally.With the help of cesium atoms, which have several advantages over other alkali atoms, such as a rich and readily adjustable energy level structure, bigger ground state hyperfine energy levels, and lower saturation light intensity. An 894.596 nm laser, as probe light, excites energy level from 6S1/2 (F = 4) to 6P3/2 (F = 5), and an 894.594 nm laser, as coupling light, is divided into two beams to excite energy level from 6S1/2 (F = 3) to 6P3/2 (F = 5). The coupling light enters the cesium atomic gas cell in two directions: either collinearly incident in the same direction as the probe light, or in the opposite direction. The probing light that interacts with the coupling light inside the cesium atomic gas and then is detected by the detector avalanche photodiode, and the outcomes are shown and measured on an oscilloscope.The experimentally observed non-reciprocal transmission of EIT proves optical signal isolation in a cesium atomic system. Under the experimental conditions, a series of experiments is conducted on the regulation of the optical non-reciprocal isolation ratio at room temperature by adjusting the power of the probe light and coupling light as well as the detuning. The influence of adjustable parameters on the non-reciprocal isolation ratio is analyzed. The results show that moderate probe light power helps maintain the intensity of EIT in the absorption intensity curve, ensuring a high isolation ratio, which provides a reference for implementing the performance metrics of optical isolators. The observed isolation ratio increases with the increase of coupling power, which is consistent with the theoretical calculation. Within a certain range of coupling light power, a high-performance optical non-reciprocal system is achieved. This trend is exactly in line with that of EIT signal strength variation during co-directional coupling light excitation. A maximum isolation ratio 26 dB is obtained when many parameters are appropriate. The results indicate that in the coherently prepared cesium atom systems, optically tunable parameters can provide an effective means for achieving ideal optical isolation with a high isolation ratio. Compared with existing research on high isolation ratio cavity-free non-reciprocity based on atomic coherence, our proposed experimental scheme can be conducted by using a three-level system at room temperature. With the development of chip-level integrated gas cells, the achieving miniaturization and system integration become easier, which provides experimental support for achieving the miniaturization and integration. This work provides a certain basis for exploring high-performance non-reciprocal devices with high isolation ratios and new perspective for designing the next generation of optical equipment.
  • 图 1  (a) $ \left| a \right\rangle $型三能级铯原子示意图; (b)实验光路图

    Fig. 1.  (a) $ \left| a \right\rangle $-type three energy level scheme of Cs atom; (b) spatial laser path diagram.

    图 2  (a)同向耦合光激发时的探测光光谱实验结果图和理论模拟计算图; (b)反向耦合光激发时的探测光光谱实验结果图和理论模拟图

    Fig. 2.  (a) Experimental spectrum and theoretical simulation results of probe transmission when the couple field is excited in the same direction; (b) experimental spectrum and theoretical simulation results of probe transmission when the couple field is excited in the opposite direction.

    图 3  (a)同向耦合光作用下, 不同探测光功率下的探测光光谱图; (b)反向耦合光作用下, 不同探测光功率下的探测光光谱图; (c)正反向透射率比随着探测光功率的变化; (d)隔离比随着探测光功率的变化, 图中的误差棒是根据每个数据标准差的重复测得

    Fig. 3.  (a) Experimental probe transmission spectrums under different probe field power when the couple field is excited in the same direction; (b) experimental probe transmission spectrums under different probe field power when the couple field is excited in the opposite direction; (c) variation of forward and backward transmission ratio with the power of probe field; (d) variation of isolation ratio with the power of probe field, where the error bars represent the standard deviations of repeated measurements.

    图 4  (a)隔离比随耦合光功率的变化; (b)隔离比随耦合光失谐的变化; 图中的误差棒是根据每个数据标准差的重复测得

    Fig. 4.  (a) Variation of isolation ratio with power of coupling field; (b) variation of isolation ratio with detuning of coupling field; the error bars in (a) and (b) represent the standard deviations of repeated measurements.

  • [1]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021 Light 10 30Google Scholar

    [2]

    Khanikaev A B, Alù A 2015 Nat. Photonics 9 359Google Scholar

    [3]

    Yu Z F, Fan S H 2009 Nat. Photonics 3 91Google Scholar

    [4]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [5]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [6]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [7]

    Staliunas K, Herrero R 2006 Phys. Rev. E 73 016601Google Scholar

    [8]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [9]

    Zhou Y F, Qin L G, Huang J H, Wang L L, Tian L J, Wang Z Y, Gong S Q 2022 J. Appl. Phys. 131 194401Google Scholar

    [10]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [11]

    Michael S, Adèle H, Elisa W, Jürgen V, Arno R 2016 Science 354 1577Google Scholar

    [12]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [13]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [14]

    Yu Z F, Fan S H 2010 IEEE J. Sel. Top. Quant. 16 459Google Scholar

    [15]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [16]

    Feng Z H, Ning T Y, Tian N, Zhao Y F 2023 Opt. Express 31 31108Google Scholar

    [17]

    Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022 Nature 609 925Google Scholar

    [18]

    Wang Z Y, Chen F J, Chi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 6 064201 (in Chinese) 王子尧, 陈福家, 郗翔, 高振, 杨怡豪 2024 物理学报 6 064201

    [19]

    Harris S E 1997 Physics Today 50 36

    [20]

    Zhang Y P, Brown, A W, Xiao M 2007 Phys. Rev. Lett. 99 123603Google Scholar

    [21]

    Che J L, Xu W Q, Wang H, Gao Y H, Wang L, Lan H Y, Wei Z Y, Hu M L 2022 Infrared Phys. Techn. 127 104449Google Scholar

    [22]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [23]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [24]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [25]

    Fan S F, Qi Y H, Lin G W, Niu Y P, Gong S Q 2020 Opt. Commun. 462 125343Google Scholar

    [26]

    Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv. 7 eabe8924Google Scholar

    [27]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G, Li X L, Gong J B, Gong S Q, Niu Y P 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [28]

    Wu H D, Ruan Y P, Li Z X, Dong M X, Cai M, Tang J S, Tang L, Zhang H, Xiao M, Xia K Y 2022 Laser Photonics Rev. 16 2100708Google Scholar

    [29]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 物理学报 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [30]

    Daniel A S 1998 Cesium D Line Data (University of Oregon: Open Publication License) p19

    [31]

    Daniel A S 2008 Rubidium 85 D Line Data (University of Oregon: Open Publication License) p19

    [32]

    Berman P R, Malinovsky V S 2011 Priciples of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press

    [33]

    郭嘉豪 2024 博士学位论文 (上海: 华东理工大学)

    Guo J H 2024 Ph. D. Dissertation (Shanghai: East China University of Science and Technology

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析. 物理学报, doi: 10.7498/aps.74.20241362
    [2] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, doi: 10.7498/aps.74.20241565
    [3] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, doi: 10.7498/aps.73.20231212
    [4] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, doi: 10.7498/aps.73.20232006
    [5] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, doi: 10.7498/aps.71.20220506
    [6] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, doi: 10.7498/aps.67.20181168
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, doi: 10.7498/aps.66.100202
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, doi: 10.7498/aps.66.034202
    [11] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, doi: 10.7498/aps.66.103201
    [12] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [13] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, doi: 10.7498/aps.64.064202
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, doi: 10.7498/aps.62.064202
    [15] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, doi: 10.7498/aps.62.174207
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  412
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-19
  • 修回日期:  2025-01-07
  • 上网日期:  2025-01-17

/

返回文章
返回