搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温下铯原子体系光学非互易调控实验研究

张慧玲 谢中柱 郝佳瑞 房勇

引用本文:
Citation:

室温下铯原子体系光学非互易调控实验研究

张慧玲, 谢中柱, 郝佳瑞, 房勇

Research on Optical Nonreciprocal Control of Cesium Atomic Systems at Room Temperature

Huiling Zhang, Zhongzhu Xie, Jiarui Hao, Yong Fang
PDF
导出引用
  • 无磁有源光学非互易器件,有助于在不使用外磁场的情况下构建针对弱信号的光信息处理网络。本文在铯原子气体中通过激光激发Λ型三能级原子结构,实验上实现电磁诱导透明现象的非互易传输,得到的光信号隔离可用于构建无磁有源光学非互易器件。在简并跃迁能级条件下,通过调节探测光和耦合光功率以及失谐进行了室温下铯原子体系的光学非互易隔离比调控实验规律的研究,分析了可调参量对非互易隔离比的影响,得到的最大隔离比可达26dB。为探索具有高隔离比的高性能非互易器件提供了一定的依据,为设计新一代光学设备提供了新的思路。
    Non-magnetic optical non-reciprocal devices are benefit for constructing optical information processing networks for weak signals without using an external magnetic field. This paper experimentally observed non-reciprocal transmission of electromagnetically induced transparency (EIT) in a cesium atomic gas through laser excites a Λ-type three-level atomic system.
    With the help of cesium atoms, which have several advantages over other alkali atoms, including a rich and readily adjustable energy level structure, bigger ground state hyperfine energy levels, and lower saturation light intensity. 894.596nm laser as probe light excited energy level 6S1/2(F=4) to 6P3/2(F=5), 894.594nm laser as coupling light is divided into two beams to excite energy level 6S1/2 (F=3) to 6P3/2 (F=5), the coupling light entered the cesium atomic gas cell from two directions: either collinearly, in the same direction as the probe light, or in the opposite direction. The probing light that interacted with the coupling light inside the cesium atomic gas and then was detected by the detector avalanche photodiode, and the outcomes were shown and measured on an oscilloscope.
    The experiment observed non-reciprocal transmission of EIT, proved optical signal isolation in a cesium atomic system. Under the experimental conditions, a series of experiments were conducted on the regulation of the optical non-reciprocal isolation ratio at room temperature by adjusting the powers of the probe and coupling lights as well as the detuning. The research analyzed the impact of adjustable parameters on the non-reciprocal isolation ratio. It has been demonstrated that moderate probe light power helps maintain the intensity of EIT in the absorption intensity curve, ensuring a high isolation ratio, which provides a reference for the performance metrics of optical isolators. The observed isolation ratio increases with the increase in coupling power, consistent with theoretical calculations. Within a certain range of coupling light power, a high-performance optical non-reciprocal system is achieved. This trend is exactly in line with the trend of EIT signal strength variation during co-directional coupling light excitation. A maximum isolation ratio 26dB was obtained when many parameters are appropriate. It revealed that in coherently prepared cesium atom systems, optically tunable parameters can provide an effective means for achieving ideal optical isolation with a high isolation ratio. Compared to existing research on high isolation ratio cavity-free non-reciprocity based on atomic coherence, our proposed experimental scheme can be conducted using a three-level system at room temperature. With the development of chip-level integrated gas cells, it becomes easier to achieve miniaturization and system integration, providing experimental support for the miniaturization and integration. This provides a certain basis for exploring high-performance non-reciprocal devices with high isolation ratios and offers new perspective for designing the next generation of optical equipment.
  • [1]

    Huang X Y, Lu C C, Liang C, Tao H G, Liu Y C 2021Light 10 30

    [2]

    Khanikaev A B, Alù A 2015Nat. Photonics 9 359

    [3]

    Yu Z F, Fan S H 2009Nat. Photonics 3 91

    [4]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017Nature 541 473

    [5]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997Phys. Rev. Lett. 78 3221

    [6]

    Estep N A, Sounas D L, Soric J, Alù A 2014Nat. Phys. 10 923

    [7]

    Staliunas K, Herrero R 2006Phys. Rev. E 73 016601

    [8]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020Phys. Rev. Lett. 124 257403

    [9]

    Zhou Y F, Qin L G, Huang J H, Wang L L, Tian L J, Wang Z Y, Gong S Q 2022J. Appl. Phys. 131 194401

    [10]

    Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, Twamley J 2014Phys. Rev. A 90 043802

    [11]

    Michael S, Adèle H, Elisa W, Jürgen V, Arno R 2016Science 354 1577

    [12]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602

    [13]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022Phys. Rev. Lett. 128083604

    [14]

    Yu Z F, Fan S H 2010IEEE J. Sel. Top. Quant. 16 459

    [15]

    Tang J S, Nie W, Tang L, Chen M Y, Su X, Lu Y Q, Nori F, Xia K Y 2022Phys. Rev. Lett. 128 203602

    [16]

    Feng Z H, Ning T Y, Tian N, Zhao Y F 2023Opt. Express 31 31108

    [17]

    Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022Nature 609 925

    [18]

    Wang Z Y, Chen F J, Chi X, Gao Z, Yang Y H 2024Acta Phys. Sin. 6 064201(in Chinese)王子尧, 陈福家, 郗翔, 高振, 杨怡豪2024物理学报6 064201

    [19]

    Harris S E 1997Physics Today 50 36

    [20]

    Zhang Y P, Brown, A W, Xiao M 2007Phys. Rev. Lett. 99 123603

    [21]

    Che J L, Xu W Q, Wang H, Gao Y H, Wang L, Lan H Y, Wei Z Y, Hu M L 2022Infrared Phys. Techn. 127 104449

    [22]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018Nat. Photonics 12744

    [23]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Gong J B, Gong S Q 2019Phys. Rev. Lett. 123 033902

    [24]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020Opt. Express 2838710

    [25]

    Fan S F, Qi Y H, Lin G W, Niu Y P, Gong S Q 2020Opt. Commun. 462 125343

    [26]

    Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, and Nori F 2021Sci. Adv. 7 eabe8924

    [27]

    Hu Y Q, Qi Y H, You Y, Zhang S C, Lin G, Li X L, Gong J B, Gong S Q, Niu Y P 2021Phys. Rev. Appl. 16 014046

    [28]

    Wu H D, Ruan Y P, Li Z X, Dong M X, Cai M, Tang J S, Tang L, Zhang H, Xiao M, Xia K Y 2022Laser Photonics Rev. 16 2100708

    [29]

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022Acta Phys. Sin.71 184202(in Chinese)李鑫,解舒云,李林帆,周海涛,王丹,杨保东2022物理学报71 184202

    [30]

    Daniel A S 1998Cesium D Line Data (University of Oregon: Open Publication License) p19

    [31]

    Daniel A S 2008Rubidium 85 D Line Data (University of Oregon: Open Publication License) p19

    [32]

    Berman P R, Malinovsky V S 2011Priciples of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press)

    [33]

    Guo J H 2024 Ph. D. Dissertation (Shanghai: East China University of Science and Technology) (in Chinese)郭嘉豪2024博士学位论文(上海: 华东理工大学)

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德堡原子电场量子测量方法及激光偏振影响分析. 物理学报, doi: 10.7498/aps.74.20241362
    [2] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, doi: 10.7498/aps.74.20241565
    [3] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, doi: 10.7498/aps.73.20231212
    [4] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, doi: 10.7498/aps.73.20232006
    [5] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, doi: 10.7498/aps.71.20220506
    [6] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, doi: 10.7498/aps.67.20181168
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, doi: 10.7498/aps.66.100202
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, doi: 10.7498/aps.66.034202
    [11] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, doi: 10.7498/aps.66.103201
    [12] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, doi: 10.7498/aps.64.160702
    [13] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, doi: 10.7498/aps.64.064202
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, doi: 10.7498/aps.62.064202
    [15] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, doi: 10.7498/aps.62.174207
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-17

/

返回文章
返回