搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔模可调的高平均功率飞秒激光再生放大器

何鹏 滕浩 张宁华 刘阳阳 王兆华 魏志义

引用本文:
Citation:

腔模可调的高平均功率飞秒激光再生放大器

何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义

A cavity mode size adjustable high average power Ti: sapphire femtosecond regenerative amplifier

He Peng, Teng Hao, Zhang Ning-Hua, Liu Yang-Yang, Wang Zhao-Hua, Wei Zhi-Yi
PDF
导出引用
  • 介绍了一种腔模可调的高平均功率飞秒激光再生放大器.通过调节再生腔内模式大小补偿热透镜效应,从而获得高效率、高平均功率的激光放大.利用该再生放大结构,在1 kHz重复频率、20 W功率抽运下,获得了平均功率为6.5 W的放大光输出,压缩后的功率为4.8 W、脉冲宽度为35 fs.腔型计算和实验结果均表明该腔型结构能很好地用于高平均功率飞秒激光放大,是进一步进行后续放大的理想前端.
    High average power femtosecond lasers based on Ti:sapphire are widely used in strong-field physics and ultrafast dynamics.Continued advances include isolated attosecond pulse generation,few-cycle pulse generation,ultrafast spectroscopy,time-resolved photo-chemical reaction dynamics and laser micro-machining benefit greatly from use of such laser systems.The regenerative amplifiers are mostly utilized and have inherent advantages over multipass ones for applications in chirped pulse amplification.In this paper we describe a design,performance,and the characterizations of a novel linear cavity regenerative amplifier which has produced 4.8 W average power with 35 fs pulse durations at 1 kHz repetition rate. The main difficulty in designing and constructing a high average power Ti:sapphire regenerative cavity is thermal lensing effect.In order to generate amplified pulses with an output power exceeding 5 W at 1 kHz,a green pump power higher than 20 W is required.Meanwhile,the focal pump beam diameter on the surface of Ti:sapphire crystal should have sub-millimeter mode size to demonstrate large pump fluence,inducing a focal length of a thermal lens about 100 mm,i.e.,which is much less than the scale of the cavity length.For our experiments,a cavity mode size adjustable geometry is employed to counteract thermal lensing effect and to optimize the conversion efficiency of the amplifier.We first characterize the cavity stability by applying the well-known ABCD matrix formalism.The cavity consisting of R=900 mm concave mirror,an 2=800 mm lens and a plane mirror has two stability ranges with increasing the focal length of the thermal lens.In order to obtain a highest thermal tolerance,the optimal cavity parameters are resolved when two stability zones merge into one.After characterizing the cavity in detail,we calculate the cavity mode and the pump beam size at the position of the Ti:sapphire rod as a function of the thermal focal length.The optimal mode radius occurs at 312 m,corresponding to the intersection point of two curves.Stability curve exhibits a weak thermal sensitivity which is defined as the change of radius of cavity mode size per unit focal power change of thermal lens, keeping well below 10 m/D in a range of 2 D-4 D.The calculated results show that the active compensation for thermal lens focal length from 100 mm to could be achieved by adjusting the lens position,without changing the cavity. 20 fs,3 nJ pulses at a repetition rate of 82 MHz produced by a home-made Kerr-lens mode-locked oscillator are first sent to a Martinez stretcher by using a 1200 lines/mm holographic reflectance grating,which temporally stretches the laser pulses to 200 ps.The seed pulses out of the stretcher is then injected into the regenerative cavity depicted above. The 20 mJ pumping energy at 1 kHz is focused through the R=900 mm concave mirror into a 10 mm Brewster-cut Ti:sapphire rod,which is cooled to 250 K by thermoelectric elements.Condensation was avoided by placing the crystal into a small evacuated chamber.Mode matchings of pump and laser beam are found to be of critical importance for high energy extraction efficiency and high beam quality.In our experiments it is accomplished by fine adjusting the F=800 mm cavity lens and the pump beam size.The amplified power of 6.5 W at 1 kHz is obtained with minimum beam distortion,giving a 33.6% slope efficiency.The trapped pulse is built-up quickly and saturated after 8-round trips. The beam size of the amplified laser is expanded to 15 mm in diameter before compressor.A transmission efficiency of 73.8% is achieved through the grating-pair Treacy-type compressor,leading to a 4.8 mJ pulse energy.The grating has a groove density of 1500 lines/mm,and the compressed output spectrum has a full width at half maximum of 29 nm. The pulse duration measurement is performed by using an interferometric autocorrelation.As a result,a typical autocorrelation trace corresponding to a 35 fs pulse width is displayed,and agrees well with the 32 fs transform limit.The far-field beam profile after the compressor is round and Gaussian in both s and p planes,respectively.This scheme is also sufficiently reliable and robust so that no components of the laser system were damaged over a year of operation. In summary,the theoretical analysis and experimental results show that the regenerative cavity developed in this work exhibits a high conversion efficiency and an extraordinary thermal stability,and it is very suitable for high power and high efficient amplification of femtosecond Ti:sapphire pulses.
      通信作者: 滕浩, hteng@iphy.ac.cn;zywei@iphy.ac.cn ; 魏志义, hteng@iphy.ac.cn;zywei@iphy.ac.cn
    • 基金项目: 国家重大科学仪器设备开发专项基金(批准号:2012YQ12004701)和国家重点基础研究发展计划(批准号:2013CB922401)资助的课题.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi, hteng@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ12004701) and the national Basic Research Program of China (Grant No. 2013CB922401).
    [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York:Academic Press) pp143-213

    [3]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [4]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195

    [5]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [6]

    Fuß W, Schmid W E, Trushin S A 2000 J. Chem. Phys. 112 8347

    [7]

    Valette S, Audouard E, Le Harzic R, Huot N, Laporte P, Fortunier R 2005 Appl. Surf. Sci. 239 381

    [8]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese)[王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫2004物理学报 53 87]

    [9]

    Koechner W 2013 Solid-State Laser Engineering (Berlin:Springer) pp350-386

    [10]

    Yang J Z H, Walker B C 2001 Opt. Lett. 26 453

    [11]

    Backus S, Bartels R, Thompson S, Dollinger R, Kapteyn H C, Murnane M M 2001 Opt. Lett. 26 465

    [12]

    Brown D C 2005 IEEE J. Sel. Top Quant. 11 587

    [13]

    Steffen J, Lortscher J P, Herziger G 1972 IEEE J. Quant. Electr. 8 239

    [14]

    Wei Z Y 1990 Laser J. 11 234(in Chinese)[魏志义1990激光杂志 11 234]

    [15]

    Clarkson W A 2001 J. Phys. D:Appl. Phys. 34 2381

    [16]

    Salin F, Le Blanc C, Squier J, Barty C 1998 Opt. Lett. 23 718

    [17]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901

  • [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York:Academic Press) pp143-213

    [3]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [4]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195

    [5]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [6]

    Fuß W, Schmid W E, Trushin S A 2000 J. Chem. Phys. 112 8347

    [7]

    Valette S, Audouard E, Le Harzic R, Huot N, Laporte P, Fortunier R 2005 Appl. Surf. Sci. 239 381

    [8]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese)[王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫2004物理学报 53 87]

    [9]

    Koechner W 2013 Solid-State Laser Engineering (Berlin:Springer) pp350-386

    [10]

    Yang J Z H, Walker B C 2001 Opt. Lett. 26 453

    [11]

    Backus S, Bartels R, Thompson S, Dollinger R, Kapteyn H C, Murnane M M 2001 Opt. Lett. 26 465

    [12]

    Brown D C 2005 IEEE J. Sel. Top Quant. 11 587

    [13]

    Steffen J, Lortscher J P, Herziger G 1972 IEEE J. Quant. Electr. 8 239

    [14]

    Wei Z Y 1990 Laser J. 11 234(in Chinese)[魏志义1990激光杂志 11 234]

    [15]

    Clarkson W A 2001 J. Phys. D:Appl. Phys. 34 2381

    [16]

    Salin F, Le Blanc C, Squier J, Barty C 1998 Opt. Lett. 23 718

    [17]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901

  • [1] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [2] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [3] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究. 物理学报, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [4] 孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬. 相干彩虹的形成机制. 物理学报, 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [5] 杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器. 物理学报, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [6] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究. 物理学报, 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [7] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [9] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [10] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [11] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [12] 刘 崇, 葛剑虹, 项 震, 陈 军. 热透镜的球差效应对大基模体积激光谐振腔模式的影响. 物理学报, 2008, 57(3): 1704-1708. doi: 10.7498/aps.57.1704
    [13] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列. 物理学报, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [14] 牛燕雄, 禹 烨, 段晓峰, 张 鹏, 武东生, 王秀生. 多脉冲激光对胶合透镜热破坏效应研究. 物理学报, 2006, 55(9): 4478-4482. doi: 10.7498/aps.55.4478
    [15] 张光寅, 宋 峰, 冯 衍, 许京军. 可自适应补偿热透镜效应的固体激光谐振腔. 物理学报, 2000, 49(8): 1495-1498. doi: 10.7498/aps.49.1495
    [16] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
    [17] 王清月, 沈家强, 许键, 向望华, 张钊, 章若冰. 非腔长匹配相干叠加脉冲锁模激光器的实验研究. 物理学报, 1994, 43(8): 1289-1294. doi: 10.7498/aps.43.1289
    [18] 张光寅. 多热扰情况下的基模热稳腔. 物理学报, 1981, 30(6): 802-809. doi: 10.7498/aps.30.802
    [19] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应. 物理学报, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
    [20] 张光寅. 基模热稳腔的若干新特性. 物理学报, 1979, 28(6): 891-893. doi: 10.7498/aps.28.891
计量
  • 文章访问数:  6060
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2016-08-16
  • 刊出日期:  2016-12-05

/

返回文章
返回