搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干彩虹的形成机制

孙天娇 钱轩 尚雅轩 刘剑 王开友 姬扬

引用本文:
Citation:

相干彩虹的形成机制

孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬

Formation mechanism of coherent rainbows

Sun Tian-Jiao, Qian Xuan, Shang Ya-Xuan, Liu Jian, Wang Kai-You, Ji Yang
PDF
导出引用
  • 用一束白光激光聚焦照射液体(水、丙酮、无水乙醇、汽水等)或固体(冰、有色玻璃、塑料、彩色蜡等),出现了多级的彩色干涉环,即相干彩虹.高强度白光局部地加热了液体(固体),改变了它的密度(以及折射性质),从而导致光程差的出现,不同波长的光都发生干渉,形成了彩色的干涉环.有色玻璃在反射模式下也出现了相干彩虹,此时的干涉完全来自于玻璃表面轮廓的变化,并且无参数拟合的结果定量地符合观测到的干涉图案.
    Focusing white laser into samples, many colorful rings (coherent rainbows) come out. Such phenomena have been observed in many materials like water, acetone, absolute ethyl alcohol, soft drink and other liquids, and ice, colored glass, plastics, wax and other solids. From the center of the coherent rainbows to the outer side, the distance between neighboring rings becomes larger and larger. The coherent rainbow is an interference effect, whose optical path difference is induced by locally heating the material with the laser beam. Especially, the coherent rainbows from colored glass in reflection mode can be described with a simple formula, with which simulated results fit the observed interference pattern very well. Several possible mechanisms like nonlinear optical effect, thermal lens effect and self-phase modulation effect are excluded.
      通信作者: 姬扬, jiyang@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301202)、国家自然科学基金(批准号:11674311,61674146,61774144)、中国科学院战略先导专项(批准号:XDPB06)和王宽诚教育基金会资助的课题.
      Corresponding author: Ji Yang, jiyang@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301202), the National Natural Science Foundation of China (Grant Nos. 11674311, 61674146, 61774144), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB06), and the K. C. Wong Education Foundation, China.
    [1]

    Born M, Wolf E (translated by Yang J S et al.) 2005 Elements of the Theory of Interference and Interferometers in Principles of Optics (Beijing: Electronics Industry Press) p268 (in Chinese) [玻恩M, 沃耳夫E 著(杨葭荪 等 译) 2005 光学原理: 光的传播、干涉和衍射的电磁理论(上册) (北京:电子工业出版社) 第268页]

    [2]

    Durbin S D, Arakelian S M, Shen Y R 1981 Opt. Lett. 6 411

    [3]

    He K X, Abeleldayem H, Sekhar P C, Venkateswarlu P, George M C 1991 Opt. Commun. 81 101

    [4]

    Sarkisov S S, Curley M J, Fields A 2003 Proc. SPIE 5212 193

    [5]

    Mathews S J, Kumar S C, Giribabu L, Rao S V 2007 Opt. Commun. 280 206

    [6]

    Karimzadeh R 2012 J. Opt. 14 095701

    [7]

    Pu S L, Yao L F, Guan F F, Liu M 2009 Opt. Coummun. 282 908

    [8]

    Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159

    [9]

    Shi B X, Miao L L, Wang Q K, Du J, Tang P H, Liu J, Zhao C J, Wen S C 2015 Appl. Phys. Lett. 107 151101

    [10]

    Wu Y L, Wu Q, Sun F, Cheng C, Meng S, Zhao J M 2015 Proc. Natl. Acad. Sci. USA 112 11800

    [11]

    Zhang J D, Yu X F, Han W J, L B S, Li X H, Xiao S, Gao Y L, He J 2016 Opt. Lett. 41 1704

    [12]

    Li X H, Liu R K, Xie H H, Zhang Y, L B S, Wang P, Wang J H, Fan Q, Ma Y, Tao S H, Xiao S, Yu X F, Gao Y L, He J 2017 Opt. Express 25 18346

    [13]

    Wang Y N, Tang Y J, Cheng P H, Zhou X F, Zhu Z, Liu Z P, Liu D, Wang Z M, Bao J M 2017 Nanoscale 9 3547

    [14]

    Wu L M, Xie Z J, Lu L, Zhao J L, Wang Y Z, Jiang X T, Ge Y Q, Zhang F, Lu S B, Guo Z N, Liu J, Xiang Y J, Xu S X, Li J Q, Fan D Y, Zhang H 2018 Adv. Opt. Mater. 6 1700985

    [15]

    Wang X, Yan Y F, Cheng H, Wang Y H, Han J B 2018 Mater. Lett. 214 247

    [16]

    Kadhum A J, Hussein N A, Hassan Q M A, Sultan H A, Al-Asadi A S, Emshary C A 2018 Optik 157 540

    [17]

    Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y L, He J 2018 Opt. Lett. 43 523

    [18]

    Zhang Q, Cheng X M, He B, Ren Z Y, Zhang Y, Chen H W, Bai J T 2018 Opt. Laser Technol. 102 140

    [19]

    Du W C, Liu S H 1993 Opt. Commun. 98 117

    [20]

    Yang X Q, Qi S W, Chen K, Zhang C P, Tian J G, Wu Q 2005 Opt. Mater. 27 1358

    [21]

    al-Ahmad A Y, al-Mudhaffer M F, Badran H A, Emshary C A 2013 Opt. Laser Technol. 54 72

    [22]

    Sun T J, Shang Y X, Qian X, Ji Y 2018 Acta Phys. Sin. 67 034205 (in Chinese) [孙天娇, 尚雅轩, 钱轩, 姬扬 2018 物理学报 67 034205]

    [23]

    Sun T J, Qian X, Shang Y X, Liu J, Wang K Y, Ji Y 2018 Sci. Bull. 63 531

    [24]

    Karimzadeh R 2013 Opt. Commun. 286 329

  • [1]

    Born M, Wolf E (translated by Yang J S et al.) 2005 Elements of the Theory of Interference and Interferometers in Principles of Optics (Beijing: Electronics Industry Press) p268 (in Chinese) [玻恩M, 沃耳夫E 著(杨葭荪 等 译) 2005 光学原理: 光的传播、干涉和衍射的电磁理论(上册) (北京:电子工业出版社) 第268页]

    [2]

    Durbin S D, Arakelian S M, Shen Y R 1981 Opt. Lett. 6 411

    [3]

    He K X, Abeleldayem H, Sekhar P C, Venkateswarlu P, George M C 1991 Opt. Commun. 81 101

    [4]

    Sarkisov S S, Curley M J, Fields A 2003 Proc. SPIE 5212 193

    [5]

    Mathews S J, Kumar S C, Giribabu L, Rao S V 2007 Opt. Commun. 280 206

    [6]

    Karimzadeh R 2012 J. Opt. 14 095701

    [7]

    Pu S L, Yao L F, Guan F F, Liu M 2009 Opt. Coummun. 282 908

    [8]

    Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159

    [9]

    Shi B X, Miao L L, Wang Q K, Du J, Tang P H, Liu J, Zhao C J, Wen S C 2015 Appl. Phys. Lett. 107 151101

    [10]

    Wu Y L, Wu Q, Sun F, Cheng C, Meng S, Zhao J M 2015 Proc. Natl. Acad. Sci. USA 112 11800

    [11]

    Zhang J D, Yu X F, Han W J, L B S, Li X H, Xiao S, Gao Y L, He J 2016 Opt. Lett. 41 1704

    [12]

    Li X H, Liu R K, Xie H H, Zhang Y, L B S, Wang P, Wang J H, Fan Q, Ma Y, Tao S H, Xiao S, Yu X F, Gao Y L, He J 2017 Opt. Express 25 18346

    [13]

    Wang Y N, Tang Y J, Cheng P H, Zhou X F, Zhu Z, Liu Z P, Liu D, Wang Z M, Bao J M 2017 Nanoscale 9 3547

    [14]

    Wu L M, Xie Z J, Lu L, Zhao J L, Wang Y Z, Jiang X T, Ge Y Q, Zhang F, Lu S B, Guo Z N, Liu J, Xiang Y J, Xu S X, Li J Q, Fan D Y, Zhang H 2018 Adv. Opt. Mater. 6 1700985

    [15]

    Wang X, Yan Y F, Cheng H, Wang Y H, Han J B 2018 Mater. Lett. 214 247

    [16]

    Kadhum A J, Hussein N A, Hassan Q M A, Sultan H A, Al-Asadi A S, Emshary C A 2018 Optik 157 540

    [17]

    Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y L, He J 2018 Opt. Lett. 43 523

    [18]

    Zhang Q, Cheng X M, He B, Ren Z Y, Zhang Y, Chen H W, Bai J T 2018 Opt. Laser Technol. 102 140

    [19]

    Du W C, Liu S H 1993 Opt. Commun. 98 117

    [20]

    Yang X Q, Qi S W, Chen K, Zhang C P, Tian J G, Wu Q 2005 Opt. Mater. 27 1358

    [21]

    al-Ahmad A Y, al-Mudhaffer M F, Badran H A, Emshary C A 2013 Opt. Laser Technol. 54 72

    [22]

    Sun T J, Shang Y X, Qian X, Ji Y 2018 Acta Phys. Sin. 67 034205 (in Chinese) [孙天娇, 尚雅轩, 钱轩, 姬扬 2018 物理学报 67 034205]

    [23]

    Sun T J, Qian X, Shang Y X, Liu J, Wang K Y, Ji Y 2018 Sci. Bull. 63 531

    [24]

    Karimzadeh R 2013 Opt. Commun. 286 329

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [3] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [4] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [5] 施婷婷, 钱轩, 尚雅轩, 姬扬. 相干彩虹的形成机制(续). 物理学报, 2022, 71(15): 154202. doi: 10.7498/aps.71.20220455
    [6] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [7] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [8] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究. 物理学报, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [9] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [10] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环. 物理学报, 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [11] 孙天娇, 尚雅轩, 钱轩, 姬扬. 清水出彩虹. 物理学报, 2018, 67(3): 034205. doi: 10.7498/aps.67.20172663
    [12] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [13] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器. 物理学报, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [14] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [15] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [16] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  7500
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-07-05
  • 刊出日期:  2019-09-20

/

返回文章
返回