搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维拉格朗日坐标系下气粒混合双向耦合对激波流场影响的计算

陈大伟 孙海权 王裴 蔚喜军 马东军

引用本文:
Citation:

二维拉格朗日坐标系下气粒混合双向耦合对激波流场影响的计算

陈大伟, 孙海权, 王裴, 蔚喜军, 马东军

Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework

Chen Da-Wei, Sun Hai-Quan, Wang Pei, Yu Xi-Jun, Ma Dong-Jun
PDF
导出引用
  • 喷射颗粒与气体混合是内爆压缩领域的热点和难点. 针对喷射混合中的气粒双向耦合问题, 开展了理论建模、离散算法以及颗粒反馈对激波流场的影响研究. 建立了拉格朗日计算框架下的数学模型; 给出了耦合源项的离散算法; 开展了平面及汇聚构型条件下, 气粒双向耦合的数值模拟研究; 发现了颗粒反馈导致气体激波提速现象以及气区流场物理量分布形态的改变, 初步获得了量化分析结果. 本文建立的数学模型、计算方法和获得的新的物理认识, 为深入理解喷射混合现象、解决相关工程应用问题提供了重要理论支撑.
    When an extreme shock wave releases from the free surface of the material, some high speed particulate matters will be ejected from the material body and enter into the background gas. This induced multiphase mixing phenomenon is known as the ejecta mixing. Ejecta mixing is one of the most important problems in the scope of inner explosive compression engineering, and it is also a frontier research subject of the impact dynamics, multiphase fluid dynamics, computational mathematics, etc. The properties of ejecta mixing have been investigated experimently and analytically for many years. However, the results of numerical simuliation are very rare. At present, the ejecta mixing study mainly focuses on the gas particle one-way coupling, that is, the interests of existing works are in the characteristics of the ejected particulate matter transport in the gas. In fact, after a large number of particles entering into the gas, the gas and the particles will interact with each other. So it is necessary to consider the feedback of particles to the gas. In this paper, the theoretical modeling of gas particle two-way coupling, the discrete algorithm of the mathematical model and the particle phase feedback effects on the gas shock wave propagation are investigated in the framework of Lagrangian coordinates. In order to obtain the details of ejecta movement, the particle trajectory model is chosen as the basic model, and then the governing equations including interactions between gas phase and particle phase are derived. For giving the specific calculation formula, the physical meanings of the coupled interaction source terms in the Lagrangian framework are analyzed and a stable numerical scheme is given based on the staggered strategy. We also devise two different computing models of ejecta mixing, the planar and the column configurations, and then the numerical simulations are carried out. The phenomenon of gas shock speed acceleration caused by particle feedback is found, and the distributions of the physical quantities, such as density, velocity, specific internal energy, pressure, in the gas area are changed. Especially for the convergent configuration, the feedback effects will be amplified further by the geometrical shrinkage, which may have a significant influence on the performance of the inner explosion compression, owing to the obvious uniformity variation of the gas flow field and the gas shock rebound in advance. The mathematical model, the numerical method and the new physical findings in this paper, will provide an important theoretical support for the in-depth understanding of the ejecta mixing and also for the solving of the corresponding engineering application problems.
      通信作者: 王裴, wangpei@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1530261, 11571002)、中国工程物理研究院科学技术发展基金(批准号: 2015B0101021, 2015B0201043, 2013A0202011)、国防基础科研计划(批准号: B1520133015)和计算物理重点实验室基金(批准号: 42601-03-02)资助的课题.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002), the Science Foundation of China Academy of Engineering Physics, China (Grant Nos. 2015B0101021, 2015B0201043, 2013A0202011), the National Defense Basic Scientific Research Program of China (Grant No. B1520133015), and the Foundation of State Key Laboratory of Computational Physics, China (Grant No. 42601-03-02).
    [1]

    Asay J, Mix L, Perry F 1976 J. Appl. Phys. 29 284

    [2]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [3]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [4]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [5]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83 177

    [6]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and Shock Waves 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [7]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴 强 2015 物理学报 64 124701]

    [8]

    Ye Y, Li J, Zhu P F, Qian W X, Liu Z Q, Wang X, Li X Z, Li Z Y, Li Z R, Zhong J 2013 Chin. J. High Pressure Phys. 27 398 (in Chinese) [叶雁, 李军, 朱鹏飞, 钱伟新, 刘振清, 王晓, 李欣竹, 李作友, 李泽仁, 钟杰 2013 高压物理学报 27 398]

    [9]

    Chen Y T, Hu H B, Tang T G, Ren G W, Li Q Z, Wang R B, Buttler W T 2012 J. Appl. Phys. 111 053509

    [10]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [11]

    Elias P, Chapron P, Mondot M 1989 In Shock Compression of Condensed Matter (Elsevier Science Publishers) p783

    [12]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Combust. Explo. Shock 34 696

    [13]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [14]

    Furnish M D 2012 Sandia Laboratories SAND2012-1552 C

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Damaged Surface Hydrodynamics (DSH) Flash Report LA-UR-15-22889

    [16]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [17]

    Gu X 2004 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [顾旋 2004 硕士学位论文(哈尔滨: 哈尔滨工程大学)]

    [18]

    Xiong Q G, Aramideh S, Passalacqua A, Kong S C 2015 J. Heat. Trans. 137 061008

    [19]

    Yu H 2003 Explosion and Shock Waves 23 493 (in Chinese) [喻虹 2003 爆炸与冲击 23 493]

    [20]

    Moshfegh A, Shams M, Ebrahimi R, Farnia M A 2009 Int. J. Heat Fluid Fl. 30 1142

  • [1]

    Asay J, Mix L, Perry F 1976 J. Appl. Phys. 29 284

    [2]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [3]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [4]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [5]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83 177

    [6]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and Shock Waves 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [7]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴 强 2015 物理学报 64 124701]

    [8]

    Ye Y, Li J, Zhu P F, Qian W X, Liu Z Q, Wang X, Li X Z, Li Z Y, Li Z R, Zhong J 2013 Chin. J. High Pressure Phys. 27 398 (in Chinese) [叶雁, 李军, 朱鹏飞, 钱伟新, 刘振清, 王晓, 李欣竹, 李作友, 李泽仁, 钟杰 2013 高压物理学报 27 398]

    [9]

    Chen Y T, Hu H B, Tang T G, Ren G W, Li Q Z, Wang R B, Buttler W T 2012 J. Appl. Phys. 111 053509

    [10]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [11]

    Elias P, Chapron P, Mondot M 1989 In Shock Compression of Condensed Matter (Elsevier Science Publishers) p783

    [12]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Combust. Explo. Shock 34 696

    [13]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [14]

    Furnish M D 2012 Sandia Laboratories SAND2012-1552 C

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Damaged Surface Hydrodynamics (DSH) Flash Report LA-UR-15-22889

    [16]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [17]

    Gu X 2004 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [顾旋 2004 硕士学位论文(哈尔滨: 哈尔滨工程大学)]

    [18]

    Xiong Q G, Aramideh S, Passalacqua A, Kong S C 2015 J. Heat. Trans. 137 061008

    [19]

    Yu H 2003 Explosion and Shock Waves 23 493 (in Chinese) [喻虹 2003 爆炸与冲击 23 493]

    [20]

    Moshfegh A, Shams M, Ebrahimi R, Farnia M A 2009 Int. J. Heat Fluid Fl. 30 1142

  • [1] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240606
    [2] 赵宁宁, 肖新宇, 凡凤仙, 苏明旭. 基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究. 物理学报, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [3] 刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌. 镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究. 物理学报, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [4] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [5] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [6] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [7] 郝世峰, 楼茂园, 杨诗芳, 李超, 孔照林, 裘薇. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验. 物理学报, 2015, 64(19): 194702. doi: 10.7498/aps.64.194702
    [8] 董建军, 曹柱荣, 杨正华, 陈伯伦, 黄天暄, 邓博, 刘慎业, 江少恩, 丁永坤, 伊圣振, 穆宝忠. 辐射驱动内爆流线实验测量. 物理学报, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [9] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [10] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究. 物理学报, 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [11] 刘磊, 费建芳, 章立标, 黄小刚, 程小平. 台风条件下一种新的浪流相互作用参数化方法在耦合模式中的应用. 物理学报, 2012, 61(5): 059201. doi: 10.7498/aps.61.059201
    [12] 杨凌霄, 赵小梅, 高自友, 郑建风. 考虑交通出行惯例的双向行人流模型研究. 物理学报, 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [13] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] 刘福才, 臧秀凤, 宋佳秋. 双向耦合混沌系统的反同步性研究. 物理学报, 2009, 58(6): 3765-3771. doi: 10.7498/aps.58.3765
    [15] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计. 物理学报, 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [16] 郑容森, 谭惠丽, 孔令江, 刘慕仁. 双向两车道混合车辆交通流的特性. 物理学报, 2005, 54(10): 4614-4620. doi: 10.7498/aps.54.4614
    [17] 张平伟, 唐国宁, 罗晓曙. 双向耦合混沌系统广义同步. 物理学报, 2005, 54(8): 3497-3501. doi: 10.7498/aps.54.3497
    [18] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型. 物理学报, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [19] 杜懋陆, 谌家军, 陈康生. Ni2+—6X-络合物g因子的双自旋—轨道耦合系数模型. 物理学报, 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
    [20] 储连元. 原子核内的自旋轨道耦合. 物理学报, 1958, 14(6): 469-478. doi: 10.7498/aps.14.469
计量
  • 文章访问数:  5089
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2016-01-04
  • 刊出日期:  2016-04-05

/

返回文章
返回