搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究

赵宁宁 肖新宇 凡凤仙 苏明旭

引用本文:
Citation:

基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究

赵宁宁, 肖新宇, 凡凤仙, 苏明旭

Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method

Zhao Ning-Ning, Xiao Xin-Yu, Fan Feng-Xian, Su Ming-Xu
PDF
HTML
导出引用
  • 从单个固体和液滴颗粒的声吸收和散射特性计算入手, 基于概率统计的蒙特卡罗方法(MCM), 将声波以离散化的声子加以处理, 通过追踪其运动历程并进行事件统计, 建立一种气体介质中球形混合颗粒的声衰减预测模型. 对空气中铝粉颗粒和亚微米级水滴的声衰减分别计算和验证后, 将模型推广至含有混合颗粒的三相体系, 对铝粉和液滴构成的单、多分散混合颗粒体系进行数值研究. 结果表明: 两类颗粒的声吸收特性差异明显, 其散射声压均随颗粒无因次尺寸kR的增加呈现从后向散射占主要地位逐渐过渡到前向增强的趋势. 气液固混合颗粒三相体系中, 颗粒类型对于声衰减影响明显、且随浓度的增加不同颗粒的衰减贡献不再遵循随混合比的线性递变关系; 对于多分散体系而言, 声衰减谱受平均粒径影响较大, 对于粒径分布宽度参数则不敏感. 模型可进一步结合数学反演形成混合颗粒体系测量的理论基础.
    From the perspective of calculating ultrasonic absorption and scattering properties of individual solid particle and droplet, the ultrasonic wave is treated as discrete phonons. And by tracking their motion process and event statistics, a new prediction model of ultrasonic attenuation of spherical mixed particles in gaseous medium is established with Monte Carlo method. Considering the difference in physical properties between solid particles and liquid particles, the ultrasonic absorption characteristics of the two kinds of particles are obviously different, and when dimensionless particle size kR ≤ 1, the backscattering of particles is uniform and dominant, then the ultrasonic scattering pressures gradually transit from the dominant position of backscattering to the trend of forward enhancement with the increase of dimensionless particle size. The numerical simulation results for the system with a single particle type are compared with those from various standard models such as classical ECAH model and McC model, showing that they are in good agreement. Similarly, the results are then compared with experimental results, which accord with each other in general. After calculating and verifying the ultrasonic attenuation of aluminum particles and submicron droplets respectively in air, the method is extended to the three-phase monodisperse and polydisperse mixed particle system composed of aluminum particles and liquid droplets. In the three-phase system of gas-liquid-solid mixed particles, the particle type has a significant influence on ultrasonic attenuation, and the attenuation contribution of different particles against mixing ratio does not follow the linear gradient with the increase of volume concentration. For a polydisperse system, the ultrasonic attenuation spectrum is greatly affected by the average particle size, but it is insensitive to the width of particle size distribution. The numerical results also show that both the particle type and particle distribution size should be carefully take into account in the polydisperse system. Moreover, the MCM model can be further extended to non-spherical particles and combined with mathematical inversion to form the theoretical basis for the measurement of mixed particle system.
      通信作者: 苏明旭, sumx@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51776129)资助的课题
      Corresponding author: Su Ming-Xu, sumx@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51776129)
    [1]

    黄婷 2018 博士学位论文(成都: 西南石油大学)

    Huang T 2018 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)

    [2]

    葛春亮, 蒋楠, 刘文榉, 厉雄峰, 李晨朗 2021 热力发电 50 103Google Scholar

    Ge C L, Jing N, Liu W J, Li X F, Li C L 2021 Therm. Power Gener. 50 103Google Scholar

    [3]

    黄正梁, 王超, 李少硕, 杨遥, 孙婧元, 王靖岱, 阳永荣 2020 化工学报 71 274

    Huang Z L, Wang C, Li S S, Yang Y, Sun J Y, Wang J D, Yang Y R 2020 J. Chem. Ind. Eng. 71 274

    [4]

    陶芳芳, 宁尚雷, 靳海波 2020 过程工程学报 20 371Google Scholar

    Tao F F, Ning S L, Jin H B 2020 Chin. J. Process Eng. 20 371Google Scholar

    [5]

    万梓傲, 童永霞, 陈思井, 周金荣 2020 舰船电子工程 40 174Google Scholar

    Wan Z A, Tong Y X, Chen S J, Zhou J R 2020 Ship Electron. Eng. 40 174Google Scholar

    [6]

    Epstein P S, Carhart R R 1953 J. Acoust. Soc. Am. 25 553Google Scholar

    [7]

    Allegra J R, Hawley S A 1972 J. Acoust. Soc. Am. 51 1545Google Scholar

    [8]

    Mcclements D J, Hemar Y, Herrmann N 1999 J. Acoust. Soc. Am. 105 915Google Scholar

    [9]

    Mcclements D J, Coupland J N 1996 Colloids Surf., A 117 161Google Scholar

    [10]

    Mcclements D J 1992 J. Acoust. Soc. Am. 91 849Google Scholar

    [11]

    Parker N G, Povey M J W 2012 Food Hydrocolloids Oxford 26 99Google Scholar

    [12]

    Liu L 2009 Chem. Eng. Sci. 64 5036Google Scholar

    [13]

    Dong L L, Su M X, Xue M H, Cai X S, Shang Z T 2007 AIP Conf. Proc. 914 654Google Scholar

    [14]

    Wang Q, Attenborough K, Woodhead S 2000 J. Sound Vib. 236 781Google Scholar

    [15]

    Wang Q, Attenborough K, Woodhead S 2001 Proc. Inst. Mech. Eng. Part E 215 133Google Scholar

    [16]

    杜娜, 苏明旭 2019 应用声学 38 980Google Scholar

    Du N, Su M X 2019 J. Appl. Acoust. 38 980Google Scholar

    [17]

    侯森, 胡长青, 赵梅 2021 物理学报 70 044301Google Scholar

    Hou S, Hu C Q, Zhao M 2021 Acta Phys. Sin. 70 044301Google Scholar

    [18]

    陈时, 张迪, 王成会, 张引红 2019 物理学报 68 074301Google Scholar

    Chen S, Zhang D, Wang C H, Zhang Y H 2019 Acta Phys. Sin. 68 074301Google Scholar

    [19]

    郭盼盼, 苏明旭, 陈丽, 蔡小舒 2014 过程工程学报 14 562

    Guo P P, Su M X, Chen L, Cai X S 2014 Chin. J. Process Eng. 14 562

    [20]

    李运思, 苏明旭, 杨荟楠, 凡凤仙, 蔡小舒 2017 声学学报 42 586Google Scholar

    Li Y S, Su M X, Yang H N, Fan F X, Cai X S 2017 Acta. Acust. 42 586Google Scholar

    [21]

    Huang B F, Fan F X, Li Y S, Su M X 2019 Ultrason. 94 218Google Scholar

    [22]

    冷坤, 章曦, 武文远, 龚艳春, 杨云涛 2018 物理与工程 28 74Google Scholar

    Leng K, Zhang X, Wu W Y, Gong Y C, Yang Y T 2018 Phys. Eng. 28 74Google Scholar

    [23]

    王敏, 申玉清, 陈震宇, 徐鹏 2021 计算物理 38 623Google Scholar

    Wang M, Shen Y Q, Chen Z Y, Xu P 2021 Chin. J. Comput. Phys. 38 623Google Scholar

    [24]

    Hay A E, Mercer D G 1985 J. Acoust. Soc. Am. 78 1761Google Scholar

    [25]

    Faran J J 1951 J. Acoust. Soc. Am. 23 405Google Scholar

    [26]

    冯若 1999 超声手册 (南京: 南京大学出版社) 第66页

    Feng R 1999 Ultrasonic Handbook (Nanjing: Nanjing University Press) p66 (in Chinese)

    [27]

    Wang M, Zheng D, Dong J, Hu J 2021 IEEE Trans. Instrum. Meas. 70 1Google Scholar

  • 图 1  声子在混合颗粒体系中传播过程

    Fig. 1.  Schematic of a phonon propagation through a mixed particle system.

    图 2  蒙特卡罗模型的算法流程图

    Fig. 2.  Flow chart of Monte Carlo model.

    图 3  液滴和铝粉的声散射及吸收系数比

    Fig. 3.  Ratio of scattering and absorption coefficients of droplet and aluminum particle.

    图 4  液滴颗粒散射声压

    Fig. 4.  Scattering pressure of droplet.

    图 5  不同条件声子统计结果 (a) 不同声子数目时相对偏差; (b) 不同体积浓度时声子去向

    Fig. 5.  Statistic of phonons under different conditions: (a) Relative deviations at different number of phonons; (b) phonon events at different particle volume concentrations.

    图 6  模型验证及物性敏感性 (a) 声衰减系数随颗粒半径变化; (b) 声衰减系数随颗粒物性参数变化

    Fig. 6.  Model validation and the sensitivity of physical parameters: (a) Ultrasonic attenuation coefficient varies with the particle radius; (b) ultrasonic attenuation coefficient varies with the particle parameters.

    图 7  实验结果对比 (a) 铝粉颗粒; (b) 液滴颗粒 (R1R2分别为文献中超声和图像法测得液滴半径)

    Fig. 7.  Comparison with experimental results: (a) Aluminum particle; (b) droplet (R1 and R2 are droplet radius measured by ultrasonic and image method in the reference respectively).

    图 8  单分散三相混合体系声衰减

    Fig. 8.  Ultrasonic attenuation coefficient in monodisperse mixed system.

    图 9  混合颗粒体系粒径分布

    Fig. 9.  Particle size distribution of mixed particle system.

    图 10  多分散三相混合体系声衰减 (a) 随频率变化; (b) 随浓度变化

    Fig. 10.  Ultrasonic attenuation coefficient in polydisperse mixed system: (a) Curves with frequency; (b) curves with volume concentration.

    表 1  数值计算中介质和颗粒物性参数(25 ℃)

    Table 1.  Parameters in the numerical simulation (25 ℃)

    密度
    ρ/(kg·m–3)
    声速
    c/(m·s–1)
    剪切模量
    G/Pa
    比热容
    cp/(J·kg–1·K–1)
    黏度
    μ/(Pa·s)
    热膨胀
    系数 β/K–1
    声吸收
    系数 aw/(Np·m–1)
    空气1.21334.310041.81 × 10–43.661 × 10–41.7 × 10–11
    液滴100014974178.59.03 × 10–42.57 × 10–42.2 × 10–14
    铝粉380050002.63 × 10107692.65 × 10–51.3 × 10–9
    下载: 导出CSV
  • [1]

    黄婷 2018 博士学位论文(成都: 西南石油大学)

    Huang T 2018 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)

    [2]

    葛春亮, 蒋楠, 刘文榉, 厉雄峰, 李晨朗 2021 热力发电 50 103Google Scholar

    Ge C L, Jing N, Liu W J, Li X F, Li C L 2021 Therm. Power Gener. 50 103Google Scholar

    [3]

    黄正梁, 王超, 李少硕, 杨遥, 孙婧元, 王靖岱, 阳永荣 2020 化工学报 71 274

    Huang Z L, Wang C, Li S S, Yang Y, Sun J Y, Wang J D, Yang Y R 2020 J. Chem. Ind. Eng. 71 274

    [4]

    陶芳芳, 宁尚雷, 靳海波 2020 过程工程学报 20 371Google Scholar

    Tao F F, Ning S L, Jin H B 2020 Chin. J. Process Eng. 20 371Google Scholar

    [5]

    万梓傲, 童永霞, 陈思井, 周金荣 2020 舰船电子工程 40 174Google Scholar

    Wan Z A, Tong Y X, Chen S J, Zhou J R 2020 Ship Electron. Eng. 40 174Google Scholar

    [6]

    Epstein P S, Carhart R R 1953 J. Acoust. Soc. Am. 25 553Google Scholar

    [7]

    Allegra J R, Hawley S A 1972 J. Acoust. Soc. Am. 51 1545Google Scholar

    [8]

    Mcclements D J, Hemar Y, Herrmann N 1999 J. Acoust. Soc. Am. 105 915Google Scholar

    [9]

    Mcclements D J, Coupland J N 1996 Colloids Surf., A 117 161Google Scholar

    [10]

    Mcclements D J 1992 J. Acoust. Soc. Am. 91 849Google Scholar

    [11]

    Parker N G, Povey M J W 2012 Food Hydrocolloids Oxford 26 99Google Scholar

    [12]

    Liu L 2009 Chem. Eng. Sci. 64 5036Google Scholar

    [13]

    Dong L L, Su M X, Xue M H, Cai X S, Shang Z T 2007 AIP Conf. Proc. 914 654Google Scholar

    [14]

    Wang Q, Attenborough K, Woodhead S 2000 J. Sound Vib. 236 781Google Scholar

    [15]

    Wang Q, Attenborough K, Woodhead S 2001 Proc. Inst. Mech. Eng. Part E 215 133Google Scholar

    [16]

    杜娜, 苏明旭 2019 应用声学 38 980Google Scholar

    Du N, Su M X 2019 J. Appl. Acoust. 38 980Google Scholar

    [17]

    侯森, 胡长青, 赵梅 2021 物理学报 70 044301Google Scholar

    Hou S, Hu C Q, Zhao M 2021 Acta Phys. Sin. 70 044301Google Scholar

    [18]

    陈时, 张迪, 王成会, 张引红 2019 物理学报 68 074301Google Scholar

    Chen S, Zhang D, Wang C H, Zhang Y H 2019 Acta Phys. Sin. 68 074301Google Scholar

    [19]

    郭盼盼, 苏明旭, 陈丽, 蔡小舒 2014 过程工程学报 14 562

    Guo P P, Su M X, Chen L, Cai X S 2014 Chin. J. Process Eng. 14 562

    [20]

    李运思, 苏明旭, 杨荟楠, 凡凤仙, 蔡小舒 2017 声学学报 42 586Google Scholar

    Li Y S, Su M X, Yang H N, Fan F X, Cai X S 2017 Acta. Acust. 42 586Google Scholar

    [21]

    Huang B F, Fan F X, Li Y S, Su M X 2019 Ultrason. 94 218Google Scholar

    [22]

    冷坤, 章曦, 武文远, 龚艳春, 杨云涛 2018 物理与工程 28 74Google Scholar

    Leng K, Zhang X, Wu W Y, Gong Y C, Yang Y T 2018 Phys. Eng. 28 74Google Scholar

    [23]

    王敏, 申玉清, 陈震宇, 徐鹏 2021 计算物理 38 623Google Scholar

    Wang M, Shen Y Q, Chen Z Y, Xu P 2021 Chin. J. Comput. Phys. 38 623Google Scholar

    [24]

    Hay A E, Mercer D G 1985 J. Acoust. Soc. Am. 78 1761Google Scholar

    [25]

    Faran J J 1951 J. Acoust. Soc. Am. 23 405Google Scholar

    [26]

    冯若 1999 超声手册 (南京: 南京大学出版社) 第66页

    Feng R 1999 Ultrasonic Handbook (Nanjing: Nanjing University Press) p66 (in Chinese)

    [27]

    Wang M, Zheng D, Dong J, Hu J 2021 IEEE Trans. Instrum. Meas. 70 1Google Scholar

  • [1] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [3] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响. 物理学报, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [4] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征. 物理学报, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [6] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [7] 冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62(18): 184501. doi: 10.7498/aps.62.184501
    [8] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [9] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [10] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [11] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [12] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [14] 雷晓蔚, 赵晓雨. 二维完全阻挫XY模型的动力学指数. 物理学报, 2009, 58(8): 5661-5666. doi: 10.7498/aps.58.5661
    [15] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [16] 牟维兵, 陈盘训. 用蒙特卡罗法计算X射线在重金属界面的剂量增强系数. 物理学报, 2001, 50(2): 189-192. doi: 10.7498/aps.50.189
    [17] 张逸新, 许 强. 光学与粒径耦合多分散性的动态光散射研究. 物理学报, 1999, 48(4): 735-743. doi: 10.7498/aps.48.735
    [18] 钱祖文. 颗粒介质中声衰减的浓悬浮粒子理论及其应用. 物理学报, 1988, 37(1): 64-70. doi: 10.7498/aps.37.64
    [19] 杨瑞青, 熊诗杰, 蔡建华. 金属超晶格中的声衰减. 物理学报, 1984, 33(7): 1058-1061. doi: 10.7498/aps.33.1058
    [20] 冯克安. 液晶N相→SA相相变点附近的反常声衰减. 物理学报, 1980, 29(11): 1437-1444. doi: 10.7498/aps.29.1437
计量
  • 文章访问数:  4074
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-12-03
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回