搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维圆盘颗粒体系声学行为的数值研究

刘晓宇 张国华 孙其诚 赵雪丹 刘尚

引用本文:
Citation:

二维圆盘颗粒体系声学行为的数值研究

刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚

Numerical study on acoustic behavior of two-dimensional granular system

Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang
PDF
导出引用
  • 数值测量了卸载过程中二维单分散圆盘颗粒系统的横波、纵波声速、声衰减系数、非线性系数随压强的变化以及声衰减系数随频率的变化.结果表明,二维(2D)圆盘颗粒体系的横波、纵波声速均随压强呈分段幂律标度:当压强P -4时,横波、纵波声速随压强的增大而减小;当P > 10-4时,有vt~ P0.202,vl~ P0.338.进一步得到其剪切模量和体积模量的比值G/B也随压强呈幂律标度,G/B ~ P-0.502,暗示在低压强下,与三维(3D)球形颗粒体系类似,2D圆盘颗粒体系也处于L玻璃态.水平激励和垂直激励下2D圆盘颗粒系统的衰减系数随频率变化也呈现分段行为:当频率f f变化;当f > 0.05时,横波纵波的衰减系数α ~ f;当f > 0.35时,横波衰减系数αT~ f2,纵波衰减系数αL~ f1.5.此外,竖直水平激励下的2D圆盘颗粒系统的非线性系数和衰减系数随压强也呈现与声速类似的分段规律:当P -4时,横波非线性系数βT~ P-0.230,其余都不随压强变化.当P > 10-4时,两者均随压强增大呈幂律减小:βT~ P-0.703,βL~ P-0.684,αT~ P-0.099,αL~ P-0.105.进而得到2D圆盘颗粒系统中散射相关的特征长度l*随压强呈幂律标度,当P -4时,l*~ P-0.595;当P > 10-4时,l*~ P0.236.
    The transversal and longitudinal wave velocities, the acoustic attenuation coefficients, the nonlinear coefficients at different pressures and the acoustic attenuation coefficient as a function of frequency in a two-dimensional (2D) monodisperse disc system are numerically calculated. The results show that the transversal and longitudinal wave velocities both exhibit a piecewise power law with pressure P. When P -4, the velocity decreases with the increase of pressure in the 2D disc granular system, and when P > 10-4, the transversal wave velocity Vt and longitudinal wave velocity Vl show the scaling power laws, i.e., νt~P0.202 and vl~P0.338, respectively. The ratio of the shear modulus to the bulk modulus G/B shows a power law scaling with the pressure, G/B~P-0.502, implying that the system lies in an L glass state at low pressure, similar to that of a three-dimensional (3D) spherical granular system. The attenuation coefficients (αT, αL) of the horizontal excitation and vertical excitation also show the picecewise behaviors with the change of frequency f. When f f. When f > 0.05, α ∝ fTα, αL ∝ f. And when f > 0.35, αT ∝ f2 and αL ∝ f1.5. In addition, the nonlinear coefficient and the attenuation coefficient of the 2D disc granular system under the vertical and horizontal excitation both also show a piecewise law behavior with pressure, similar to that of the acoustic velocity. When P -4, only the transversal nonlinear coefficient changes according to βT ∝ P-0.230, while the other coefficient has no change. When P > 10-4, the attenuation coefficients and nonlinear coefficients decrease according to their power law with the increase of pressure, i.e., βT ∝ P-0.703, βL ∝ P-0.684, αT ∝ P-0.099, αL ∝ P-0.105. The characteristic length l*, which characterizes the disordered structure responsible for the scattering, also decreases according to power law with the increase of pressure, when P -4, l* ∝ P-0.595; when P > 10-4, l* ∝ P0.236.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; Sun Qi-Cheng, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 11572178, 91634202).
    [1]

    Liu A J, Nagel S R 1998 Nature 396 21

    [2]

    Henkes S, Chakraborty B 2005 Phys. Rev. Lett. 95 198002

    [3]

    O'Hern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [4]

    O'Hern C, Langer S, Liu A, Nagel S 2002 Phys. Rev. Lett. 88 075507

    [5]

    Xu N 2011 Front. Phys. 6 109

    [6]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [7]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [8]

    Coulais C, Behringer R P, Dauchot O 2014 Soft Matter 10 1519

    [9]

    Karimi K, Maloney C E 2015 Phys. Rev. E 92 022208

    [10]

    Sussman D M, Goodrich C P, Liu A J, Nagel S R 2015 Soft Matter 11 2745

    [11]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [12]

    Wyart M, Silbert L, Nagel S 2005 Phys. Rev. E 72 051306

    [13]

    Silbert L, Liu A, Nagel S 2005 Phys. Rev. Lett. 95 098301

    [14]

    Vitelli V 2010 Soft Matter 6 3007

    [15]

    Mizuno H, Silbert L E, Sperl M 2016 Phys. Rev. Lett. 116 068302

    [16]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [17]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [18]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese)[张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 234501]

    [19]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [20]

    Vitelli V, Xu N, Wyart M, Liu A J, Nagel S R 2010 Phys. Rev. E 81 021301

    [21]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [22]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [23]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [24]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [25]

    West B J, Shlesinger M F 1984 J. Stat. Phys. 36 779

    [26]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [27]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [28]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

  • [1]

    Liu A J, Nagel S R 1998 Nature 396 21

    [2]

    Henkes S, Chakraborty B 2005 Phys. Rev. Lett. 95 198002

    [3]

    O'Hern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [4]

    O'Hern C, Langer S, Liu A, Nagel S 2002 Phys. Rev. Lett. 88 075507

    [5]

    Xu N 2011 Front. Phys. 6 109

    [6]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [7]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [8]

    Coulais C, Behringer R P, Dauchot O 2014 Soft Matter 10 1519

    [9]

    Karimi K, Maloney C E 2015 Phys. Rev. E 92 022208

    [10]

    Sussman D M, Goodrich C P, Liu A J, Nagel S R 2015 Soft Matter 11 2745

    [11]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [12]

    Wyart M, Silbert L, Nagel S 2005 Phys. Rev. E 72 051306

    [13]

    Silbert L, Liu A, Nagel S 2005 Phys. Rev. Lett. 95 098301

    [14]

    Vitelli V 2010 Soft Matter 6 3007

    [15]

    Mizuno H, Silbert L E, Sperl M 2016 Phys. Rev. Lett. 116 068302

    [16]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [17]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [18]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese)[张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 234501]

    [19]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [20]

    Vitelli V, Xu N, Wyart M, Liu A J, Nagel S R 2010 Phys. Rev. E 81 021301

    [21]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [22]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [23]

    Zhang P, Zhao X D, Zhang G H, Zhang Q, Sun Q C, Hou Z J, Dong J J 2016 Acta Phys. Sin. 65 024501 (in Chinese)[张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军 2016 物理学报 65 024501]

    [24]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [25]

    West B J, Shlesinger M F 1984 J. Stat. Phys. 36 779

    [26]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [27]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [28]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

  • [1] 赵宁宁, 肖新宇, 凡凤仙, 苏明旭. 基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究. 物理学报, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [2] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [3] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响. 物理学报, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [4] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [5] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [6] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [7] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [8] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [9] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [10] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [13] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质. 物理学报, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [14] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [15] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [16] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [17] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [18] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析. 物理学报, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [19] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [20] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
计量
  • 文章访问数:  5687
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-12-05

/

返回文章
返回