搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种全局同质化相依网络耦合模式

高彦丽 陈世明

引用本文:
Citation:

一种全局同质化相依网络耦合模式

高彦丽, 陈世明

A global homogenizing coupled pattern of interdependent networks

Gao Yan-Li, Chen Shi-Ming
PDF
导出引用
  • 相依网络的相依模式(耦合模式)是影响其鲁棒性的重要因素之一. 本文针对具有无标度特性的两个子网络提出一种全局同质化相依网络耦合模式. 该模式以子网络的总度分布均匀化为原则建立相依网络的相依边, 一方面压缩度分布宽度, 提高其对随机失效的抗毁性, 另一方面避开对度大节点(关键节点)的相依, 提高其对蓄意攻击的抗毁性. 论文将其与常见的节点一对一的同配、异配及随机相依模式以及一对多随机相依模式作了对比分析, 仿真研究其在随机失效和蓄意攻击下的鲁棒性能. 研究结果表明, 本文所提全局同质化相依网络耦合模式能大大提高无标度子网络所构成的相依网络抗级联失效能力. 本文研究成果能够为相依网络的安全设计等提供指导意义.
    Many infrastructure networks interact with and depend on each other to provide proper functionality. The interdependence between networks has catastrophic effects on their robustness. Events taking place in one system can propagate to any other coupled system. Recently, great efforts have been dedicated to the research on how the coupled pattern between two networks affects the robustness of interdependent networks. However, how to dynamically construct the links between two interdependent networks to obtain stronger robustness is rarely studied. To fill this gap, a global homogenizing coupled pattern between two scale-free networks is proposed in this paper. Making the final degrees of nodes distributed evenly is the principle for building the dependency links, which has the following two merits. First, the system robustness against random failure is enhanced by compressing the broadness of degree distribution. Second, the system invulnerability against targeted attack is improved by avoiding dependence on high-degree nodes. In order to better investigate its efficiency on improving the robustness of coupled networks against cascading failures, we adopt other four kinds of coupled patterns to make a comparative analysis, i.e., the assortative link (AL), the disassortative link (DL), the random link (RL) and global random link (GRL). We construct the BA-BA interdependent networks with the above 5 coupled patterns respectively. After applying targeted attacks and random failures to the networks, we use the ratio of giant component size after cascades to initial network size to measure the robustness of the coupled networks. It is numerically found that the interdependent network based on global homogenizing coupled pattern shows the strongest robustness under targeted attacks or random failures. The global homogenizing coupled pattern is more efficient to avoid the cascading propagation under targeted attack than random failure. Finally, the reasonable explanations for simulation results is given by a simply graph. This work is very helpful for designing the interdependent networks against cascading failures.
      通信作者: 陈世明, shmchen@ecjtu.jx.cn
    • 基金项目: 国家自然科学基金(批准号:61364017)和教育部人文社会科学研究规划基金(批准号:13YJAZH010)资助的课题.
      Corresponding author: Chen Shi-Ming, shmchen@ecjtu.jx.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61364017) and the Humanities and Social Science Project of Ministry of Education of China (Grant No. 13YJAZH010).
    [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 物理学报 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 物理学报 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 物理学报 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

  • [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 物理学报 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 物理学报 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 物理学报 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

计量
  • 文章访问数:  4993
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-04-11
  • 刊出日期:  2016-07-05

/

返回文章
返回