搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电探测噪声对单模光纤自适应耦合装置的闭环性能影响研究

黄冠 耿超 李枫 李新阳 吕国云 樊养余

引用本文:
Citation:

光电探测噪声对单模光纤自适应耦合装置的闭环性能影响研究

黄冠, 耿超, 李枫, 李新阳, 吕国云, 樊养余

Influence of photoelectric conversion noise on closed-loop performance of adaptive SMF coupling device

Huang Guan, Geng Chao, Li Feng, Li Xin-Yang, Lv Guo-Yun, Fan Yang-Yu
PDF
HTML
导出引用
  • 单模光纤自适应耦合装置能够将空间激光高效、稳定的耦合至单模光纤中, 在自由空间光通信领域具有重要的研究意义. 然而, 在长距离、强大气湍流环境下的空间光通信系统中, 装置闭环性能会受到光电探测噪声的严重干扰. 本文针对该问题开展了深入研究, 分析了光电探测噪声的作用机理, 建立了噪声干扰程度评价指标, 同时结合实际的单模光纤自适应耦合装置开展了相应的数值仿真研究. 仿真结果表明, 光电探测噪声会对光纤耦合过程中的闭环平均耦合效率、闭环精度、以及闭环带宽产生严重影响. 根据仿真结果, 本文给出了相应的经验公式, 能够用以计算强噪声干扰环境下光纤耦合过程应满足的光学及电学参数. 本文的理论及仿真结果能够为长距离、强大气湍流环境下的单模光纤自适应耦合装置的设计提供相应的理论依据.
    The single-mode fiber (SMF) adaptive coupling device can efficiently and stably couple the space laser into SMF, which plays an important role in the fiber-based free space optical communication (FSOC) technology. Therefore, a novel corrector named adaptive fiber coupler (AFC) is developed and successfully used in the adaptive SMF coupling applications. However, in the FSOC system under long-range turbulent atmosphere, the closed loop performance of AFC will be seriously disturbed by the photoelectric conversion noise. This problem is studied in depth in this paper. The operational principle of the photoelectric conversion noise is analyzed, and the corresponding evaluation index isgiven. Furthermore, The numerical simulation experiments are conducted to study the specific influence of the photoelectric conversion noise. The results show that the averaged closed-loop coupling efficiency, control accuracy, and control bandwidth of AFC are seriously affected. According to the results, the empirical formula is given. This formula can be used to calculate the optical and electrical parameters that the AFC device should meet under the condition of strong noise interference. The theoretical and simulation results in this paper can provide a theoretical basis for designing the AFC device under long-range turbulent atmosphere.
      通信作者: 耿超, blast_4006@126.com ; 吕国云, lvguoyun101@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62005286)资助的课题
      Corresponding author: Geng Chao, blast_4006@126.com ; Lv Guo-Yun, lvguoyun101@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62005286)
    [1]

    Hemmati H 2006 Deep Space Optical Communications (Hoboken: John Wiley & Sons Press) pp1–5

    [2]

    Toyoshima M, Leeb W R, Kunimori H, Takano T 2007 Opt. Eng. 46 015003Google Scholar

    [3]

    姜会林, 佟首峰 2010 空间激光通信技术与系统(北京: 国防工业出版社) 第1−21页

    Jiang H L, Tong S F 2010 The Technologies and Systems of Space Laser Communication (Beijing: National Defense Industry Press) pp1−21 (in Chinese)

    [4]

    赵尚弘, 吴继礼, 李勇军, 王翔, 马丽华, 韩仲祥 2011 激光与光电子学进展 48 28

    Zhao S H, Wu J L, Li Y J, Wang X, Ma L H, Han Z X 2011 Laser Optoelectron. Prog. 48 28

    [5]

    Mai V V, Kim H 2019 IEEE P. J. 11 7902213

    [6]

    Zhao X Q, Hou X, Zhu F A, Li T, Sun J F, Zhu R, Gao M, Yang Y, Chen W B 2019 Opt. Express 27 23996Google Scholar

    [7]

    HuQ, Zhen LL, Mao Y, Zhu S W, Zhou X, Zhou G Z 2020 Opt. Express 28 13141Google Scholar

    [8]

    Dikmelik Y, Davidson F M 2005 App. Opt. 44 4946Google Scholar

    [9]

    Toyoshima M 2006 J. Opt. Soc. Am. A. 23 2246Google Scholar

    [10]

    Ma J, Zhao F, Tan L Y, Yu S Y, Han Q Q 2009 App. Opt. 48 5184Google Scholar

    [11]

    Carhart G W, Vorontsov M A, Beresnev L A, et al. 2005 Proceedings of SPIE-Free-Space Laser Communications V Bellingham, USA, September 12, 2005 p589211

    [12]

    Vorontsov M A 2005 Proceedings of SPIE-Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23, 2005 p589501

    [13]

    Beresnev L A, Vorontsov M A 2005 Proceedings of SPIE - Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23 2005 p58950 R

    [14]

    Weyrauch T, Vorontsov M A, Carhart G W, Simonova G V, Beresnev L A, PolnauE E 2007 Proceedings of SPIE-Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation San Diego, CA, September 25, 2007 p67080 R

    [15]

    耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳 2013 物理学报 62 224202Google Scholar

    Geng C, Luo W, Tan Y, Liu H M, Mo J B, Li X Y 2013 Acta Phys. Sin. 62 224202Google Scholar

    [16]

    耿超, 张小军, 李新阳, 饶长辉 2011 红外与激光工程 40 1682Google Scholar

    Geng C, Zhang X J, Li X Y, Rao C H 2011 Infrar. Laser Eng. 40 1682Google Scholar

    [17]

    耿超, 李新阳, 张小军, 饶长辉 2012 物理学报 61 034204Google Scholar

    Geng C, Li X Y, Zhang X J, Rao C H 2012 Acta Phys. Sin. 61 034204Google Scholar

    [18]

    罗文, 耿超, 李新阳 2014 光学学报 34 0606001

    Luo W, Geng C, Li X Y 2014 Acta Opt. Sin. 34 0606001

    [19]

    Luo W, Geng C, Wu Y Y, Tan Y, Luo Q, Liu H M, Li X Y 2014 Chin. Phys. B 23 014207Google Scholar

    [20]

    Huang G, Geng C, Li F, Yang Y, Li X Y 2018 IEEE P. J. 10 7904212

    [21]

    芮道满, 刘超, 陈莫, 鲜浩 2018 光电工程 45 170647

    Rui D M, Liu C, Chen M, Xian H 2018 Opto-Electronic Eng. 45 170647

    [22]

    Geng C, Li F, Zuo J, Liu J Y, Yang X, Yu T, Jiang J L, Li X Y 2020 Opt. Lett. 45 1906Google Scholar

    [23]

    Chen M, Liu C, Rui D M, Xian H 2019 Opt. Comm. 430 223Google Scholar

    [24]

    铙瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第164页

    Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p164 (in Chinese)

    [25]

    凡木文, 黄林海, 李梅, 饶长辉 2016 物理学报 65 024209Google Scholar

    Fan M W, Huang L H, Li M, Rao C H 2016 Acta Phys. Sin. 65 024209Google Scholar

  • 图 1  基于AFC的SMF自适应耦合装置结构图

    Fig. 1.  Structure of the adaptive SMF coupling system based on AFC.

    图 2  艾里斑与SMF基模光强分布 (a) SMF基模光强分布; (b) 艾里斑光强分布; (c)截面光强分布

    Fig. 2.  Intensity distribution of the airy disk and the SMF’s fundamental mode: (a) SMF’s fundamental mode; (b) airy disk; (c) intensity distribution of the cross profile.

    图 3  SMF耦合效率与光纤端面对准偏差的关系

    Fig. 3.  Relationship between the SMF coupling efficiency and the position deviation of the fiber tip.

    图 4  光纤端面定位器的频率响应特性

    Fig. 4.  Frequency characteristic of the locator of the fiber tip.

    图 5  SMF耦合效率迭代曲线

    Fig. 5.  Iteration curves of the SMF coupling efficiency.

    图 6  SMF平均耦合效率迭代曲线

    Fig. 6.  Averaged iteration curves of the SMF coupling efficiency.

    图 7  闭环耦合效率统计特征与耦合效率信噪比的关系 (a)均值; (b) 均方差

    Fig. 7.  Relationshipbetween the statistical character oftheconverged SMF coupling efficiencyandthevalue of CESNR: (a) Mean; (b) standarddeviation.

    图 8  AFC装置闭环带宽与耦合效率信噪比的关系

    Fig. 8.  Relationship between the control band width of AFC system and the value of CESNR.

  • [1]

    Hemmati H 2006 Deep Space Optical Communications (Hoboken: John Wiley & Sons Press) pp1–5

    [2]

    Toyoshima M, Leeb W R, Kunimori H, Takano T 2007 Opt. Eng. 46 015003Google Scholar

    [3]

    姜会林, 佟首峰 2010 空间激光通信技术与系统(北京: 国防工业出版社) 第1−21页

    Jiang H L, Tong S F 2010 The Technologies and Systems of Space Laser Communication (Beijing: National Defense Industry Press) pp1−21 (in Chinese)

    [4]

    赵尚弘, 吴继礼, 李勇军, 王翔, 马丽华, 韩仲祥 2011 激光与光电子学进展 48 28

    Zhao S H, Wu J L, Li Y J, Wang X, Ma L H, Han Z X 2011 Laser Optoelectron. Prog. 48 28

    [5]

    Mai V V, Kim H 2019 IEEE P. J. 11 7902213

    [6]

    Zhao X Q, Hou X, Zhu F A, Li T, Sun J F, Zhu R, Gao M, Yang Y, Chen W B 2019 Opt. Express 27 23996Google Scholar

    [7]

    HuQ, Zhen LL, Mao Y, Zhu S W, Zhou X, Zhou G Z 2020 Opt. Express 28 13141Google Scholar

    [8]

    Dikmelik Y, Davidson F M 2005 App. Opt. 44 4946Google Scholar

    [9]

    Toyoshima M 2006 J. Opt. Soc. Am. A. 23 2246Google Scholar

    [10]

    Ma J, Zhao F, Tan L Y, Yu S Y, Han Q Q 2009 App. Opt. 48 5184Google Scholar

    [11]

    Carhart G W, Vorontsov M A, Beresnev L A, et al. 2005 Proceedings of SPIE-Free-Space Laser Communications V Bellingham, USA, September 12, 2005 p589211

    [12]

    Vorontsov M A 2005 Proceedings of SPIE-Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23, 2005 p589501

    [13]

    Beresnev L A, Vorontsov M A 2005 Proceedings of SPIE - Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23 2005 p58950 R

    [14]

    Weyrauch T, Vorontsov M A, Carhart G W, Simonova G V, Beresnev L A, PolnauE E 2007 Proceedings of SPIE-Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation San Diego, CA, September 25, 2007 p67080 R

    [15]

    耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳 2013 物理学报 62 224202Google Scholar

    Geng C, Luo W, Tan Y, Liu H M, Mo J B, Li X Y 2013 Acta Phys. Sin. 62 224202Google Scholar

    [16]

    耿超, 张小军, 李新阳, 饶长辉 2011 红外与激光工程 40 1682Google Scholar

    Geng C, Zhang X J, Li X Y, Rao C H 2011 Infrar. Laser Eng. 40 1682Google Scholar

    [17]

    耿超, 李新阳, 张小军, 饶长辉 2012 物理学报 61 034204Google Scholar

    Geng C, Li X Y, Zhang X J, Rao C H 2012 Acta Phys. Sin. 61 034204Google Scholar

    [18]

    罗文, 耿超, 李新阳 2014 光学学报 34 0606001

    Luo W, Geng C, Li X Y 2014 Acta Opt. Sin. 34 0606001

    [19]

    Luo W, Geng C, Wu Y Y, Tan Y, Luo Q, Liu H M, Li X Y 2014 Chin. Phys. B 23 014207Google Scholar

    [20]

    Huang G, Geng C, Li F, Yang Y, Li X Y 2018 IEEE P. J. 10 7904212

    [21]

    芮道满, 刘超, 陈莫, 鲜浩 2018 光电工程 45 170647

    Rui D M, Liu C, Chen M, Xian H 2018 Opto-Electronic Eng. 45 170647

    [22]

    Geng C, Li F, Zuo J, Liu J Y, Yang X, Yu T, Jiang J L, Li X Y 2020 Opt. Lett. 45 1906Google Scholar

    [23]

    Chen M, Liu C, Rui D M, Xian H 2019 Opt. Comm. 430 223Google Scholar

    [24]

    铙瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第164页

    Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p164 (in Chinese)

    [25]

    凡木文, 黄林海, 李梅, 饶长辉 2016 物理学报 65 024209Google Scholar

    Fan M W, Huang L H, Li M, Rao C H 2016 Acta Phys. Sin. 65 024209Google Scholar

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响. 物理学报, 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [3] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [4] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [5] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [6] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响. 物理学报, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [7] 冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华. 混沌与湍流大气中的光通信. 物理学报, 2016, 65(8): 084207. doi: 10.7498/aps.65.084207
    [8] 聂敏, 任杰, 杨光, 张美玲, 裴昌幸. PM2.5大气污染对自由空间量子通信性能的影响. 物理学报, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [9] 谭毅, 耿超, 李新阳, 罗文, 罗奇. 大气环境下基于目标照明回光的视轴误差校正实验研究. 物理学报, 2015, 64(2): 024216. doi: 10.7498/aps.64.024216
    [10] 李金才, 彭宇行, 朱敏, 陈鹏. 基于空间自适应非凸正则项全变差相干斑噪声抑制. 物理学报, 2014, 63(18): 189501. doi: 10.7498/aps.63.189501
    [11] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [12] 莫秋燕, 赵彦立. 光通信用雪崩光电二极管(APD)频率响应特性研究. 物理学报, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [13] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应. 物理学报, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [16] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [17] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究. 物理学报, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [18] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [19] 熊 涛, 常胜江, 申金媛, 张延炘. 用于可变比特率视频通信量预测的自适应训练及删剪算法. 物理学报, 2005, 54(4): 1931-1936. doi: 10.7498/aps.54.1931
    [20] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
计量
  • 文章访问数:  3889
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-07-10
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回