搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率脉冲磁控溅射钛靶材的放电模型及等离子特性

陈畅子 马东林 李延涛 冷永祥

引用本文:
Citation:

高功率脉冲磁控溅射钛靶材的放电模型及等离子特性

陈畅子, 马东林, 李延涛, 冷永祥

Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target

Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang
PDF
HTML
导出引用
  • 等离子密度及金属离化率是影响高功率脉冲磁控溅射沉积薄膜质量的关键因素, 高功率脉冲磁控溅射参数(如电压、脉宽、沉积气压及峰值电流等)影响着等离子密度和金属离化率. 本文利用MATLAB/SIMULINK建立等效电路模型, 对高功率脉冲磁控溅射钛(Ti)靶材的放电电流曲线进行模拟, 利用鞘层电阻计算Ti靶材鞘层处的等离子密度, 并采用半圆柱体-整体模型理论计算Ti的离化率. 研究发现: 采用由电容、电感和电阻组成的等效电路模型, 可以模拟Ti靶材的放电电流; 在不同高功率脉冲溅射电压、脉冲宽度和不同沉积气压下, 真空室等离子密度在2 × 1017—9 × 1017 m–3范围内, 随着溅射电压、脉冲宽度及沉积气压的增加, 鞘层处的平均等离子密度增大; 在不同沉积气压下, Ti的离化率值在31%—38%之间, 随着气压增加, Ti的离化率增加.
    High-power pulsed magnetron sputtering has become a popular research tool in surface technology industry because it can prepare the films with excellent surface quality. The plasma density and metal ionization rate are the key factors affecting the quality of the film deposited by high-power pulsed magnetron sputtering. The parameters of high-power pulsed magnetron sputtering (such as applied voltage, pulse width, deposition pressure and peak current) affect the plasma density and metal ionization rate. In this paper, in order to more easily understand the plasma densities and metal ionization rates at the different process parameters, the plasma densities and ionization rates are calculated numerically. An equivalent circuit model established by MATLAB/Simulink software is used to obtain the discharge current curve of high-power pulsed magnetron sputtering titanium (Ti) target. The plasma density near the plasma sheath is calculated by the sheath resistance in the equivalent circuit model. The ionization rate of Ti is calculated by using the semi-cylinder global model theory combined with the discharge current simulated by equivalent circuit model. It is found that under the different high power pulse sputtering voltages, pulse widths and different deposition pressures, the discharge modes are of gas discharge and metal ion discharge, and the gas discharge interacts with metal ion discharge. The equivalent circuit model is produced by the main discharge mode, and the equivalent circuit model composed of capacitor, inductor and resistors in series and in parallel can be used to simulate the discharge current of Ti target. The result shows that the simulated discharge current is accurate in the rising edge and peak value in comparison with experimental data. The value of electron component in the model is related to the saturation ion current.According to the sheath resistance in the model, the average plasma density in the vacuum chamber increases with increasing sputtering voltage, pulse width and deposition pressure. And the plasma density in the vacuum chamber lies in a range of (2–9) × 1017 m–3. The particle equilibrium equation is established by using the semi-cylinder global model theory. The electron temperature (5 eV) and discharge current are used as boundary conditions to calculate the ionization rate of Ti. The value of the ionization rate of Ti is in a range of 31%–38% at different deposition pressures, and the ionization rate of Ti increases with the increase of deposition pressure.
      通信作者: 冷永祥, yxleng@263.net
    • 基金项目: 表面物理与化学重点实验室项目(批准号: 6142A02190402)资助的课题
      Corresponding author: Leng Yong-Xiang, yxleng@263.net
    • Funds: Project supported by the Fund of Science and Technology on Surface Physics and Chemistry Laboratory, China (Grant No. 6142A02190402)
    [1]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [2]

    Bobzin K, Brgelmann T, Kruppe N C, Carlet M 2020 Surf. Coat. Technol. 385 125370Google Scholar

    [3]

    Jing P P, Ma D L, Gong Y L, Luo X Y, Leng Y X 2020 Surf. Coat. Technol. 405 126542Google Scholar

    [4]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys. 42 015304Google Scholar

    [5]

    王愉, 陈畅子, 吴艳萍, 冷永祥 2017 表面技术 46 15Google Scholar

    Wang Y, Chen C Z, Wu Y P, Leng Y X 2017 Surface Technology 46 15Google Scholar

    [6]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Helmersson U 2006 Thin Solid Films 515 1522Google Scholar

    [7]

    Konstantinidis S, Dauchot J P, Ganciu M, Ricard A, Hecq M 2006 J. Appl. Phys. 99 013307Google Scholar

    [8]

    Yu H, Sporre J R, Liang M, McLain J T, Ruzic D N, Szott M M, Raman P 2015 J. Vac. Sci. Technol. A 33 031301Google Scholar

    [9]

    Bohlmark J, Helmersson U, Van Zeeland M, Axnis I, Alami J, Brenning N 2004 Plasma Sources Sci. Technol. 13 654Google Scholar

    [10]

    Gahan D, Dolinaj B, Hopkinsl M 2008 Rev. Sci. Instrum. 79 3455Google Scholar

    [11]

    Kirkpatrick S 2009 Ph. D. Dissertations (Nebraska: University of Nebraska)

    [12]

    Ken Y, Ryosuke M, Kingo A, Hiroshi T, Tadao O 2009 Nuclear Inst & Methods in Physics Research B 267 1692Google Scholar

    [13]

    Chen C Z, Ma D L, Huang N, Leng Y X 2019 Int. J. Mod. Phys. B 33 290Google Scholar

    [14]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 290Google Scholar

    [15]

    Gudmundsson J T 2008 J. Phys. Conf. Ser. 100 082013Google Scholar

    [16]

    Hopwood J 1998 Phys. Plasmas 5 1624Google Scholar

    [17]

    Kozak T, Pajdarova A D 2011 J. Appl. Phys. 110 1661Google Scholar

    [18]

    Minea T M, Costin C, Revel A, Lundin D, Caillault L 2014 Surf. Coat. Technol. 255 52Google Scholar

    [19]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu Ricky K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178Google Scholar

    [20]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Pan F, Tian X B, Fu R K Y, Chu P K 2016 Surf. Coat. Technol. 306 319Google Scholar

    [21]

    Liang M, Yu H, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 290Google Scholar

    [22]

    Ross A E, Ganesan R, Bilek M M M, McKenzie D R 2015 Plasma Sources Sci. Technol. 24 025018Google Scholar

    [23]

    Jing F J, Yin T L, K Yukimura, Sun H, Leng Y X, Huang N 2012 Vacuum 86 2114Google Scholar

    [24]

    Wu B H, Wu J, Jiang F, Ma D L, Chen C Z, Sun H, Leng Y X, Huang N 2017 Vacuum 135 93Google Scholar

    [25]

    Ma D L, Wu B H, Deng Q Y, Leng Y X, Huang N 2019 Vacuum 160 226Google Scholar

    [26]

    Raman P, Shchelkanov I, McLain J, Cheng M, Ruzic D, Haehnlein I, Jurczyk B, Stubbers R, Armstrong S 2016 Surf. Coat. Technol. 293 10Google Scholar

    [27]

    迈克尔 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康等 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第293页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p293 (in Chinese)

    [28]

    André A 2010 Surf. Coat. Technol. 204 2864Google Scholar

    [29]

    André A, Joakim A, David H, Arutiun E 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [30]

    André A, Joakim A, Arutiun E 2007 J. Appl. Phys. 102 113303Google Scholar

    [31]

    Brenning N, Axnas I, Raadu M A, Lundin D, Helmerson U 2008 Plasma Sources Sci. Technol. 17 045009Google Scholar

    [32]

    Ku V P T, Annaratone B M, Allen J E 1998 J. Appl. Phys. 84 6536Google Scholar

    [33]

    Bohlmark J, Alami J, Christou C 2005 J. Vac. Sci. Technol. A 23 18Google Scholar

    [34]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210Google Scholar

    [35]

    林浩 2014 硕士学位论文 (西安: 西安电子科技大学)

    Lin H 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [36]

    吴忠振, 田修波, 李春伟, 傅劲裕, 潘锋, 朱剑豪 2014 物理学报 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [37]

    Yushkov G Y, Anders A 2010 IEEE Trans. Plasma Sci. 38 3028Google Scholar

    [38]

    Ehiasarian A P, Vetushka A, Hecimovic A 2008 J. Appl. Phys. 104 267Google Scholar

    [39]

    吴保华, 冷永祥, 黄楠, 杨文茂, 李雪源 2018 表面技术 47 245Google Scholar

    Wu B H, Leng Y X, Huang N, Yang W M, Li X Y 2018 Surf. Technol. 47 245Google Scholar

  • 图 1  HPPMS放电离化区示意图[31]

    Fig. 1.  Schematic diagram of HPPMS discharge ionization region[31].

    图 2  离化区等离子密度随垂直靶材方向距离的变化曲线

    Fig. 2.  Variation curve of plasma density in ionization region with distance perpendicular to target direction.

    图 3  HPPMS电源[23]和放电区域的等效电路模型

    Fig. 3.  Equivalent circuit model of HPPMS[23] power supply and discharge region.

    图 4  不同脉宽下放电电流仿真曲线和实际测量溅射电流曲线 (a) 30 μs; (b) 100 μs; (c) 160 μs

    Fig. 4.  Simulation curve and actual measurement curve of discharge current under different pulse width: (a) 30 μs; (b) 100 μs; (c) 160 μs.

    图 5  不同HPPMS溅射电压下放电电流仿真曲线和实际测量溅射电流曲线 (a) 700 V; (b) 800 V; (c) 900 V

    Fig. 5.  Simulation curve and actual measurement curve of discharge current under different HPPMS sputtering voltage: (a) 700 V; (b) 800 V; (c) 900 V.

    图 6  不同HPPMS沉积气压下放电电流仿真曲线和实际测量溅射电流曲线 (a) 0.4 Pa; (b) 1 Pa; (c) 2.5 Pa

    Fig. 6.  Simulation curve and actual measurement curve of discharge current under different deposition pressure: (a) 0.4 Pa; (b) 1 Pa; (c)2.5 Pa.

    图 7  不同高功率脉冲磁控溅射工艺参数下的等离子密度 (a) 不同脉宽30, 100, 160 μs; (b) 不同电压700, 800, 900 V; (c)不同靶电流 113, 150, 185 A

    Fig. 7.  Comparison of plasma density calculated by equivalent circuit (simulation) under different HPPMS process parameters: (a) Different pulse width (30, 100, 160 μs); (b) different sputtering voltages (700, 800, 900 V); (c) different target currents (113, 150, 185 A)

    图 8  HPPMS靶材及离化区几何模型 (a) Ti靶尺寸及磁铁布置; (b) Ti靶剖面图D-D; (c) 离化区半圆柱体几何模型

    Fig. 8.  Geometricmodel of HPPMS target and ionization region: (a) Ti target size and magnet arrangement; (b) Ti target profile; (c) geometric model of semi cylinder in ionization region.

    图 9  不同气压下计算的 (a)粒子密度、(b)峰值电流及电子温度、(c)离化率

    Fig. 9.  (a) Particle density, (b) peak current and electron temperature and (c) ion flux fraction calculated by the global model under different pressures.

  • [1]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [2]

    Bobzin K, Brgelmann T, Kruppe N C, Carlet M 2020 Surf. Coat. Technol. 385 125370Google Scholar

    [3]

    Jing P P, Ma D L, Gong Y L, Luo X Y, Leng Y X 2020 Surf. Coat. Technol. 405 126542Google Scholar

    [4]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys. 42 015304Google Scholar

    [5]

    王愉, 陈畅子, 吴艳萍, 冷永祥 2017 表面技术 46 15Google Scholar

    Wang Y, Chen C Z, Wu Y P, Leng Y X 2017 Surface Technology 46 15Google Scholar

    [6]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Helmersson U 2006 Thin Solid Films 515 1522Google Scholar

    [7]

    Konstantinidis S, Dauchot J P, Ganciu M, Ricard A, Hecq M 2006 J. Appl. Phys. 99 013307Google Scholar

    [8]

    Yu H, Sporre J R, Liang M, McLain J T, Ruzic D N, Szott M M, Raman P 2015 J. Vac. Sci. Technol. A 33 031301Google Scholar

    [9]

    Bohlmark J, Helmersson U, Van Zeeland M, Axnis I, Alami J, Brenning N 2004 Plasma Sources Sci. Technol. 13 654Google Scholar

    [10]

    Gahan D, Dolinaj B, Hopkinsl M 2008 Rev. Sci. Instrum. 79 3455Google Scholar

    [11]

    Kirkpatrick S 2009 Ph. D. Dissertations (Nebraska: University of Nebraska)

    [12]

    Ken Y, Ryosuke M, Kingo A, Hiroshi T, Tadao O 2009 Nuclear Inst & Methods in Physics Research B 267 1692Google Scholar

    [13]

    Chen C Z, Ma D L, Huang N, Leng Y X 2019 Int. J. Mod. Phys. B 33 290Google Scholar

    [14]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 290Google Scholar

    [15]

    Gudmundsson J T 2008 J. Phys. Conf. Ser. 100 082013Google Scholar

    [16]

    Hopwood J 1998 Phys. Plasmas 5 1624Google Scholar

    [17]

    Kozak T, Pajdarova A D 2011 J. Appl. Phys. 110 1661Google Scholar

    [18]

    Minea T M, Costin C, Revel A, Lundin D, Caillault L 2014 Surf. Coat. Technol. 255 52Google Scholar

    [19]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu Ricky K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178Google Scholar

    [20]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Pan F, Tian X B, Fu R K Y, Chu P K 2016 Surf. Coat. Technol. 306 319Google Scholar

    [21]

    Liang M, Yu H, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 290Google Scholar

    [22]

    Ross A E, Ganesan R, Bilek M M M, McKenzie D R 2015 Plasma Sources Sci. Technol. 24 025018Google Scholar

    [23]

    Jing F J, Yin T L, K Yukimura, Sun H, Leng Y X, Huang N 2012 Vacuum 86 2114Google Scholar

    [24]

    Wu B H, Wu J, Jiang F, Ma D L, Chen C Z, Sun H, Leng Y X, Huang N 2017 Vacuum 135 93Google Scholar

    [25]

    Ma D L, Wu B H, Deng Q Y, Leng Y X, Huang N 2019 Vacuum 160 226Google Scholar

    [26]

    Raman P, Shchelkanov I, McLain J, Cheng M, Ruzic D, Haehnlein I, Jurczyk B, Stubbers R, Armstrong S 2016 Surf. Coat. Technol. 293 10Google Scholar

    [27]

    迈克尔 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康等 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第293页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p293 (in Chinese)

    [28]

    André A 2010 Surf. Coat. Technol. 204 2864Google Scholar

    [29]

    André A, Joakim A, David H, Arutiun E 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [30]

    André A, Joakim A, Arutiun E 2007 J. Appl. Phys. 102 113303Google Scholar

    [31]

    Brenning N, Axnas I, Raadu M A, Lundin D, Helmerson U 2008 Plasma Sources Sci. Technol. 17 045009Google Scholar

    [32]

    Ku V P T, Annaratone B M, Allen J E 1998 J. Appl. Phys. 84 6536Google Scholar

    [33]

    Bohlmark J, Alami J, Christou C 2005 J. Vac. Sci. Technol. A 23 18Google Scholar

    [34]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210Google Scholar

    [35]

    林浩 2014 硕士学位论文 (西安: 西安电子科技大学)

    Lin H 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [36]

    吴忠振, 田修波, 李春伟, 傅劲裕, 潘锋, 朱剑豪 2014 物理学报 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [37]

    Yushkov G Y, Anders A 2010 IEEE Trans. Plasma Sci. 38 3028Google Scholar

    [38]

    Ehiasarian A P, Vetushka A, Hecimovic A 2008 J. Appl. Phys. 104 267Google Scholar

    [39]

    吴保华, 冷永祥, 黄楠, 杨文茂, 李雪源 2018 表面技术 47 245Google Scholar

    Wu B H, Leng Y X, Huang N, Yang W M, Li X Y 2018 Surf. Technol. 47 245Google Scholar

  • [1] 高剑英, 李玉阁, 雷明凯. 深振荡磁控溅射放电等离子体脉冲特性. 物理学报, 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] 谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立. 非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化. 物理学报, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [3] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [4] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [5] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [6] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥. 双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制. 物理学报, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [7] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化. 物理学报, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [8] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [9] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [10] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应. 物理学报, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [11] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [12] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究. 物理学报, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [13] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [14] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [15] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [16] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [17] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [18] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [19] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
计量
  • 文章访问数:  6226
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2021-05-03
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回