搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超快激光调制的纳秒脉冲X射线发射源

李昀 苏桐 盛立志 张蕊利 刘舵 刘永安 强鹏飞 杨向辉 许泽方

引用本文:
Citation:

基于超快激光调制的纳秒脉冲X射线发射源

李昀, 苏桐, 盛立志, 张蕊利, 刘舵, 刘永安, 强鹏飞, 杨向辉, 许泽方

Nanosecond pulse X-ray emission source based on ultrafast laser modulation

Li Yun, Su Tong, Sheng Li-Zhi, Zhang Rui-Li, Liu Duo, Liu Yong-An, Qiang Peng-Fei, Yang Xiang-Hui, Xu Ze-Fang
PDF
HTML
导出引用
  • 面向基础科学与空间应用研究领域对小型化超快脉冲X射线发射源的需求, 设计并研制了基于激光调制光源与光电阴极X射线管的超快脉冲X射线发生器, 解决了传统X射线调制发射装置重复频率低、时间稳定性差、脉冲特性差等应用难题. 本文主要开展了脉冲X射线发生器的超快调制控制模块研究, 并利用基于预调制的激光控制光源实现了高时间精度、高时间稳定度的超快时变光子信号以及纳秒脉冲X射线产生. 理论方面, 建立了脉冲X射线发生器时间响应模型, 分析了出射脉冲X射线的时域时间特性. 实验方面, 搭建了基于超快闪烁体探测器的脉冲X射线时间特性实验测试系统, 测试了激光控制光源及脉冲X射线发射源的时间特性参数. 实验结果表明脉冲X射线发生器可同时实现高重频(12.5 MHz)、超快脉冲(4 ns)、高时间稳定度(400 ps)特性, 且与所建立的理论模型高度符合. 相比于传统X射线调制方案, 脉冲时间参数指标得到了大幅提升、应用场景获得了极大拓展, 本项研究有望为实现超高时间稳定性、超快脉冲X射线发射源提供新思路.
    In response to the growing demand for miniaturized ultrafast pulsed X-ray sources in the fields of fundamental science and space applications, we design and develop an ultrafast pulsed X-ray generator based on a laser-modulated light source and a photoelectric cathode. This innovative technology addresses the limitations commonly encountered in traditional X-ray emission devices, such as low repetition rate, insufficient time stability, and suboptimal pulse characteristics.Our effort is to study and develop the ultrafast modulation control module for the pulsed X-ray generator. This effort results in achieving high levels of time accuracy and stability in ultrafast time-varying photon signals. Moreover, we successfully generate nanosecond pulsed X-rays by using a laser-controlled light source.Theoretically, we establish a comprehensive time response model for the pulsed X-ray generator in response to short pulses. This includes a thorough analysis of the time characteristics of the emitted pulsed X-rays in the time domain. Experimentally, we conduct a series of tests related to various time-related parameters of the laser-controlled light source. Additionally, we design and implemente an experimental test system for assessing the time characteristics of pulsed X-rays, by using an ultrafast scintillation detector.The experimental results clearly demonstrate that our pulsed X-ray generator achieves impressive capabilities, including high repetition rates (12.5 MHz), ultrafast pulses (4 ns), and exceptional time stability (400 ps) in X-ray emission. These results closely align with our established theoretical model. Compared with traditional modulation techniques, our system exhibits significant improvement in pulse time parameters, thereby greatly expanding its potential applications.This research provides a valuable insight into achieving ultra-high time stability and ultrafast pulsed X-ray emission sources. These advances will further enhance the capabilities of X-ray technology for scientific research and space applications.
      通信作者: 苏桐, sutong@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62271483)资助的课题.
      Corresponding author: Su Tong, sutong@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271483).
    [1]

    胡慧君 2012 博士学位论文(北京: 中国科学院大学)

    Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [3]

    赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页

    Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114

    [4]

    唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar

    Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar

    [5]

    Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2

    [6]

    马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 物理学报 16 160701Google Scholar

    Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar

    [7]

    全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049

    Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049

    [8]

    Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar

    [9]

    Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37

    [10]

    Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304

    [11]

    Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020

    [12]

    安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页

    An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236

    [13]

    Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar

    [14]

    李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar

    Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar

    [15]

    李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar

    Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar

    [16]

    Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar

    [17]

    王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 物理学报 64 120701Google Scholar

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar

    [18]

    David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar

    [19]

    Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27

    [20]

    Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar

  • 图 1  脉冲X射线发生器的原理图

    Fig. 1.  Schematic diagram of pulsed X-ray generator.

    图 2  激光控制光源的设计图

    Fig. 2.  Design diagram of laser controlled light source.

    图 3  脉冲X射线发生器对短脉冲的时间响应曲线

    Fig. 3.  Time response curve of pulsed X-ray generator to short pulse.

    图 4  脉冲X射线发生器的时间弥散曲线

    Fig. 4.  Time dispersion curve of pulsed X-ray generator.

    图 5  不同重复频率下激光控制光源的输出光信号(蓝色为输入电信号, 红色为MPPC探测器接收到的光信号) (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz

    Fig. 5.  Light signals of LD light source at different modulation rates under different modulation frequencies (Blue is the input electrical signal, red is the light signal received by the MPPC detector): (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz.

    图 6  基于超快闪烁体探测器的脉冲X射线时间特性实验测试系统

    Fig. 6.  Experimental testing system for pulsed X-ray time characteristics based on ultrafast scintillator detector.

    图 7  重复频率为12.5 MHz的实验结果图 (蓝色为输入电信号, 红色为超快闪烁体探测器得到的X射线信号)

    Fig. 7.  Experimental results with a modulation frequency of 12.5 MHz (Blue is the input electrical signal, red is the X-ray signal from scintillator detection).

    图 8  脉冲宽度为4 ns的实验结果图 (蓝色为输入电信号, 红色为超快闪烁体探测器得到的X射线信号)

    Fig. 8.  Experimental results with a pulse width of 4 ns (Blue is the input electrical signal, red is the X-ray signal from scintillator detection).

    表 1  激光控制光源的特性参数

    Table 1.  Characteristics of laser controlled light source.

    Properties Parameters
    Emission wavelength/nm 468—478
    Rated power/mW 3600
    Optical output power/mW 1200
    Response time/ns 1.8
    Pulse repetition rate DC to MHz
    Divergence angle/(°) 12
    Timing pulse jitter tl/ps $\pm $70
    下载: 导出CSV
  • [1]

    胡慧君 2012 博士学位论文(北京: 中国科学院大学)

    Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [3]

    赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页

    Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114

    [4]

    唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar

    Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar

    [5]

    Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2

    [6]

    马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 物理学报 16 160701Google Scholar

    Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar

    [7]

    全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049

    Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049

    [8]

    Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar

    [9]

    Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37

    [10]

    Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304

    [11]

    Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020

    [12]

    安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页

    An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236

    [13]

    Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar

    [14]

    李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar

    Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar

    [15]

    李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar

    Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar

    [16]

    Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar

    [17]

    王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 物理学报 64 120701Google Scholar

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar

    [18]

    David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar

    [19]

    Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27

    [20]

    Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [3] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法. 物理学报, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] 王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东. 球壳结构金阴极及其X射线光电发射特性. 物理学报, 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [6] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [7] 张治国. 垂直多结光伏型集成硅X射线探测器的实现和实验. 物理学报, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [8] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [9] 白易灵, 张秋菊, 田密, 崔春红. 超相对论强度激光与薄膜靶作用中0.4 nm以下X射线阿秒脉冲的产生. 物理学报, 2013, 62(12): 125206. doi: 10.7498/aps.62.125206
    [10] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [11] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [12] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [13] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [14] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化. 物理学报, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [15] 姚军财, 申 静, 王剑华. 阴极射线管显示器亮度范围内对人眼视觉特性的实验研究. 物理学报, 2008, 57(7): 4034-4041. doi: 10.7498/aps.57.4034
    [16] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [17] 马国彬, 谭维翰. 短脉冲驱动下膨胀冷却等离子体中软X射线激光研究. 物理学报, 1994, 43(6): 942-949. doi: 10.7498/aps.43.942
    [18] 何绍堂, 淳于书泰, 沈华忠, 尤永碌, 张启仁, 杜风英, 顾元元, 杨上金, 黄文忠, 蔡玉琴, 孔令华, 谷渝秋, 孙永良, 何安, 刘素萍. 双爆炸膜内壳层光电离X射线激光实验研究. 物理学报, 1993, 42(12): 1933-1937. doi: 10.7498/aps.42.1933
    [19] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] 郭常霖. 衍射分析用的X射线管谱线纯度的定量测定. 物理学报, 1980, 29(1): 35-45. doi: 10.7498/aps.29.35
计量
  • 文章访问数:  2166
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2023-10-30
  • 上网日期:  2023-11-18
  • 刊出日期:  2024-02-20

/

返回文章
返回