搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Xe离子束辐照硼硅酸盐玻璃和石英玻璃效应对比研究

彭海波 刘枫飞 张冰焘 张晓阳 孙梦利 杜鑫 王鹏 袁伟 王铁山 王建伟

引用本文:
Citation:

Xe离子束辐照硼硅酸盐玻璃和石英玻璃效应对比研究

彭海波, 刘枫飞, 张冰焘, 张晓阳, 孙梦利, 杜鑫, 王鹏, 袁伟, 王铁山, 王建伟

Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions

Peng Hai-Bo, Liu Feng-Fei, Zhang Bing-Tao, Zhang Xiao-Yang, Sun Meng-Li, Du Xin, Wang Peng, Yuan Wei, Wang Tie-Shan, Wang Jian-Wei
PDF
导出引用
  • 玻璃固化体作为放射性废物地质处置的第一道安全屏障,它的耐辐照性能研究至关重要.玻璃固化体主要网络结构硅氧四面体与石英玻璃的硅氧四面体是一致的,所以这里用石英玻璃代替玻璃固化体作为研究对象.本文采用Xe离子在相同条件下辐照石英玻璃和硼硅酸盐玻璃.利用纳米压痕技术和椭圆偏振仪表征了辐照前后样品的硬度、模量以及折射率的变化情况.结果表明:硼硅酸盐玻璃和石英玻璃的硬度均随着辐照剂量的增大而减小,硼硅酸盐玻璃的模量随着辐照剂量的增大而减小;石英玻璃的模量随着辐照剂量的增大而增大.模量的变化可能和密度的变化有关,这点与折射率的结果相符.
    As the first safety barrier of high level radioactive waste, the tolerance to radiation of vitrification is critical. Vitrification is a kind of specialized glass used as the package of high-level radioactive waste in nuclear power industry. Because of its structural consistency with the main structure of vitrification (silicon-oxygen tetrahedron), fused silica is used to study the irradiation effect on network of vitrification in the present study. Borosilicate glass, a simplified version of vitrification, is studied under the same conditions for comparison. Hardness values, moduli and refractive indexes of fused silica and borosilicate glass are measured before and after irradiation with nanoindentation technology and elliptic polarization instrument. It is shown in this study that the hardness values of fused silica and borosilicate glass decrease with increasing dose. On the other hand, with dose increasing, the modulus of borosilicate glass decreases but the modulus of silica increases. Change in modulus might be attributed to the change of density, which is consistent with results from the refractive index.
      通信作者: 王建伟, wangjianwei@mtrc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11505085,11505086)和兰州大学教学研究项目基金(批准号:201621)资助的课题.
      Corresponding author: Wang Jian-Wei, wangjianwei@mtrc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505085, 11505086) and the Teaching Research Project Foundation of Lanzhou University, China (Grant No. 201621).
    [1]

    Weber W J, Matzke H, Routort J L 1984 J. Mater. Sci. 19 2533

    [2]

    Weber W J 1988 Nucl. Instrum. Meth. B 32 471

    [3]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky A, Price D L, Stoneham A M, Weinberg M C 1997 J. Mater. Res. 12 1948

    [4]

    Peuget S, Fares T, Maugeri E A, Caraballo R, Charpentier T, Martel L, Somers J, Janssen A, Wiss T, Rozenblum F, Magnin M, Deschanels X, Jgou C 2014 Nucl. Instrum. Meth. B 327 22

    [5]

    Peuget S, Nol P Y, Loubet J L, Pavan S, Nivet P, Chenet A 2006 Nucl. Instrum. Meth. B 246 379

    [6]

    Peuget S, Delaye J M, Jgou C 2014 J. Nucl. Mater. 444 76

    [7]

    Peuget S, Broudic V, Jgou C, Frugier P, Roudil D, Deschanels X, Rabiller H, Noel P 2007 J. Nucl. Mater. 362 474

    [8]

    Ollier N, Champagnon B, Boizot B, Guyot Y, Panczer G, Padlyak B 2003 J. Non-Cryst. Solids 323 200

    [9]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2005 J. Nucl. Mater. 340 209

    [10]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2004 Nucl. Instrum. Meth. B 218 176

    [11]

    Mohapatra M, Kadam R M, Mishra R K, Kaushik C P, Tomar B S, Godbole S V 2011 Physica B 406 3980

    [12]

    Mohapatra M, Kadam R M, Mishra R K, Dutta D, Pujari P K, Kaushik C P, Kshirsagar R J, Tomar B S, Godbole S V 2011 Nucl. Instrum. Meth. B 269 2057

    [13]

    Mohapatra M, Manchanda V K 2009 IOP Conf. Ser.: Mater. Sci. Eng. 2 012022

    [14]

    Yang K J, Wang T S, Zhang G F, Peng H B, Chen L, Zhang L M, Li C X, Tian F, Yuan W 2013 Nucl. Instrum. Meth. B 307 541

    [15]

    Zhang G F, Wang T S, Yang K J, Chen L, Zhang L M, Peng H B, Yuan W, Tian F 2013 Nucl. Instrum. Meth. B 316 218

    [16]

    Chen L, Wang T S, Yang K J, Peng H B, Zhang G F, Zhang L M, Jiang H, Wang Q 2013 Nucl. Instrum. Meth. B 307 566

    [17]

    Chen L, Yuan W, Nan S, Du X, Zhang D F, L P, Peng H B, Wang T S 2016 Nucl. Instrum. Meth. B 370 42

    [18]

    Peng H B, Sun M L, Yang K J, Chen H, Yang D, Yuan W, Chen L, Duan B H, Wang T S 2016 J. Non-Cryst. Solids 443 143

    [19]

    Wang T S, Duan B H, Tian F, Peng H B, Chen L, Zhang L M, Yuan W 2015 Chin. Phys. B 24 076102

    [20]

    Wang T S, Du X, Yuan W, Duan B H, Zhang J D, Chen L, Peng H B, Yang D, Zhang G F, Zhu Z H 2016 Surf. Coat. Technol. 306 245

    [21]

    Karakurt G, Abdelouas A, Guin J P, Nivard M, Sauvage T, Paris M, Bardeau J F 2016 J. Nucl. Mater. 475 243

    [22]

    Inagaki Y, Furuya H, Idemitsu K, Banba Y, Matsumoto S, Muraoka S 1991 Mater. Res. Soc. Symp. Proc. 257 199

    [23]

    Mir A H, Monnet I, Toulemonde M, Bouffard S, Jegou C, Peuget S 2016 J. Nucl. Mater. 469 244

    [24]

    Mir A H, Toulemonde M, Jegou C, Miro S, Serruys Y, Bouffard S, Peuget S 2016 Sci. Rep. 6 30191

    [25]

    Routbort J L, Matzke H 1983 J. Mater. Sci. Eng. 58 229

    [26]

    Joslin D L, Oliver W C 1990 J. Mater. Res. 5 123

    [27]

    Zhu D R, Lai T S 1997 Acta Sci. Natur. Univ. 36 31 (in Chinese) [朱德瑞, 赖天树 1997 中山大学学报 (自然科学版) 36 31]

    [28]

    Peng H, Sun M, Du X, Yuan W, Yang D, Chen L, Duan B, Wang T 2017 Nucl. Instrum. Meth. B 406 561

    [29]

    Peuget S, Cachia J N, Jgou C, Deschanels X, Roudil D, Broudic V, Delaye J M, Bart J M 2006 J. Nucl. Mater. 354 1

    [30]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131-133 1206

    [31]

    Arndt J, Stffler D 1969 Phys. Chem. Glasses 10 117

    [32]

    Makishima A, Mackenzie J 1973 J. Non-Cryst. Solids 12 35

    [33]

    Chi Y S, Shen J Y, Chen X X, Miu Z X 2002 J. Inorg. Mater. 17 475 (in Chinese) [迟玉山, 沈菊云, 陈学贤, 缪之训 2002 无机材料学报 17 475]

  • [1]

    Weber W J, Matzke H, Routort J L 1984 J. Mater. Sci. 19 2533

    [2]

    Weber W J 1988 Nucl. Instrum. Meth. B 32 471

    [3]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky A, Price D L, Stoneham A M, Weinberg M C 1997 J. Mater. Res. 12 1948

    [4]

    Peuget S, Fares T, Maugeri E A, Caraballo R, Charpentier T, Martel L, Somers J, Janssen A, Wiss T, Rozenblum F, Magnin M, Deschanels X, Jgou C 2014 Nucl. Instrum. Meth. B 327 22

    [5]

    Peuget S, Nol P Y, Loubet J L, Pavan S, Nivet P, Chenet A 2006 Nucl. Instrum. Meth. B 246 379

    [6]

    Peuget S, Delaye J M, Jgou C 2014 J. Nucl. Mater. 444 76

    [7]

    Peuget S, Broudic V, Jgou C, Frugier P, Roudil D, Deschanels X, Rabiller H, Noel P 2007 J. Nucl. Mater. 362 474

    [8]

    Ollier N, Champagnon B, Boizot B, Guyot Y, Panczer G, Padlyak B 2003 J. Non-Cryst. Solids 323 200

    [9]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2005 J. Nucl. Mater. 340 209

    [10]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2004 Nucl. Instrum. Meth. B 218 176

    [11]

    Mohapatra M, Kadam R M, Mishra R K, Kaushik C P, Tomar B S, Godbole S V 2011 Physica B 406 3980

    [12]

    Mohapatra M, Kadam R M, Mishra R K, Dutta D, Pujari P K, Kaushik C P, Kshirsagar R J, Tomar B S, Godbole S V 2011 Nucl. Instrum. Meth. B 269 2057

    [13]

    Mohapatra M, Manchanda V K 2009 IOP Conf. Ser.: Mater. Sci. Eng. 2 012022

    [14]

    Yang K J, Wang T S, Zhang G F, Peng H B, Chen L, Zhang L M, Li C X, Tian F, Yuan W 2013 Nucl. Instrum. Meth. B 307 541

    [15]

    Zhang G F, Wang T S, Yang K J, Chen L, Zhang L M, Peng H B, Yuan W, Tian F 2013 Nucl. Instrum. Meth. B 316 218

    [16]

    Chen L, Wang T S, Yang K J, Peng H B, Zhang G F, Zhang L M, Jiang H, Wang Q 2013 Nucl. Instrum. Meth. B 307 566

    [17]

    Chen L, Yuan W, Nan S, Du X, Zhang D F, L P, Peng H B, Wang T S 2016 Nucl. Instrum. Meth. B 370 42

    [18]

    Peng H B, Sun M L, Yang K J, Chen H, Yang D, Yuan W, Chen L, Duan B H, Wang T S 2016 J. Non-Cryst. Solids 443 143

    [19]

    Wang T S, Duan B H, Tian F, Peng H B, Chen L, Zhang L M, Yuan W 2015 Chin. Phys. B 24 076102

    [20]

    Wang T S, Du X, Yuan W, Duan B H, Zhang J D, Chen L, Peng H B, Yang D, Zhang G F, Zhu Z H 2016 Surf. Coat. Technol. 306 245

    [21]

    Karakurt G, Abdelouas A, Guin J P, Nivard M, Sauvage T, Paris M, Bardeau J F 2016 J. Nucl. Mater. 475 243

    [22]

    Inagaki Y, Furuya H, Idemitsu K, Banba Y, Matsumoto S, Muraoka S 1991 Mater. Res. Soc. Symp. Proc. 257 199

    [23]

    Mir A H, Monnet I, Toulemonde M, Bouffard S, Jegou C, Peuget S 2016 J. Nucl. Mater. 469 244

    [24]

    Mir A H, Toulemonde M, Jegou C, Miro S, Serruys Y, Bouffard S, Peuget S 2016 Sci. Rep. 6 30191

    [25]

    Routbort J L, Matzke H 1983 J. Mater. Sci. Eng. 58 229

    [26]

    Joslin D L, Oliver W C 1990 J. Mater. Res. 5 123

    [27]

    Zhu D R, Lai T S 1997 Acta Sci. Natur. Univ. 36 31 (in Chinese) [朱德瑞, 赖天树 1997 中山大学学报 (自然科学版) 36 31]

    [28]

    Peng H, Sun M, Du X, Yuan W, Yang D, Chen L, Duan B, Wang T 2017 Nucl. Instrum. Meth. B 406 561

    [29]

    Peuget S, Cachia J N, Jgou C, Deschanels X, Roudil D, Broudic V, Delaye J M, Bart J M 2006 J. Nucl. Mater. 354 1

    [30]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131-133 1206

    [31]

    Arndt J, Stffler D 1969 Phys. Chem. Glasses 10 117

    [32]

    Makishima A, Mackenzie J 1973 J. Non-Cryst. Solids 12 35

    [33]

    Chi Y S, Shen J Y, Chen X X, Miu Z X 2002 J. Inorg. Mater. 17 475 (in Chinese) [迟玉山, 沈菊云, 陈学贤, 缪之训 2002 无机材料学报 17 475]

  • [1] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [3] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [4] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [5] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [6] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [7] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [8] 卞华栋, 戴晔, 叶俊毅, 宋娟, 阎晓娜, 马国宏. 紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究. 物理学报, 2014, 63(7): 074209. doi: 10.7498/aps.63.074209
    [9] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究. 物理学报, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [10] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [11] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究. 物理学报, 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [13] 徐伟, 李成仁, 陈宝玖, 冯志庆. Eu3+作探针研究铋铕共掺硼硅酸盐玻璃光学特性. 物理学报, 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [14] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [15] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [16] 周忠祥, 王宏利, 申艳青, 刘大军, 刘 海, 何世禹, 杨德庄. 带电粒子辐照下石英玻璃和镀铝膜反射镜光学性能研究. 物理学报, 2008, 57(1): 592-599. doi: 10.7498/aps.57.592
    [17] 李瑞珉, 杜 磊, 庄奕琪, 包军林. MOSFET 辐照诱生界面陷阱形成过程的1/f噪声研究. 物理学报, 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [18] 邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展. 飞秒激光烧蚀石英玻璃的实验与理论研究. 物理学报, 2004, 53(7): 2216-2220. doi: 10.7498/aps.53.2216
    [19] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响. 物理学报, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  6368
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-25
  • 修回日期:  2017-11-10
  • 刊出日期:  2018-02-05

/

返回文章
返回