搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属Bi的卸载熔化实验研究

谭叶 俞宇颖 戴诚达 于继东 王青松 谭华

引用本文:
Citation:

金属Bi的卸载熔化实验研究

谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华

Release melting of bismuth

Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Yu Ji-Dong, Wang Qing-Song, Tan Hua
PDF
导出引用
  • 在火炮上利用金属铋(Bi)直接撞击单晶LiF窗口, 开展了金属Bi反向碰撞的冲击加载-卸载实验研究, 实验采用激光位移干涉测试系统, 获得了金属Bi在11—16 GPa压力范围内完整的卸载粒子速度剖面. 实验结果结合特征线方法计算表明, 金属Bi经冲击加载进入体心立方相, 并在11—16 GPa冲击压力作用下发生了卸载熔化, 界面粒子速度剖面的卸载拐点, 对应着金属Bi经冲击加载后发生的卸载熔化, 而这一结论同Cox的理论计算及一维流体力学程序计算结果基本一致. 本文报道的金属Bi卸载波剖面解读技术, 对于认识冲击加载下其他相似材料相变具有实用价值.
    Reverse-impact experiments are performed on bismuth (Bi) to probe into the release melting from shock pressures in a pressure range of 11-16 GPa. A displacement interferometer system for any reflector (DISAR) is employed to measure the particle velocity history at the impact interface of LiF window with Bi flyer. The obtained experimental data, together with the results from characteristic formulations and one-dimensional hydrodynamic simulations, indicate that bismuth is converted into the body-center-cubic phase under shock loading, and then melted with the releasing of state from the initial shock (Hugoniot). The inflexion on the release wave profiles is attributed to the release melting. The proposed method and extracted results are of importance for developing the phase-change diagnostics and understanding phase-transition behavior of Bi and its analogues.
    • 基金项目: 中国工程物理研究院双百人才工程(批准号: ZX01115)、国防基础科研项目(批准号: B1520110001) 和国家自然科学基金 (批准号:10972206) 资助的课题.
    • Funds: Project supported by the Dual Hundred Talent Project of CAEP (Grant No. ZX01115), the National Defense Basic Scientific Research Program of China (Grant No. B1520110001) and the National Natural Science Foundation of China (Grant No. 10972206).
    [1]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [2]

    Bass J D, Ahrens T J, Abelson J R, Tan H 1990 J. Geophys. Res. 95 21767

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [5]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [6]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [7]

    Brown J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496

    [8]

    Liu X, Zhou X M, Li J, Li J B, Cao X X 2010 Acta Phys. Sin. 59 5626 (in Chinese) [刘勋, 周显明, 李俊, 李加波, 操秀霞 2010 物理学报 59 5626]

    [9]

    Tonkov E Y, Ponyatovsky E G 2005 Transformations of Elements under High Pressure (Florida: CRC PRESS) p148

    [10]

    Duff R E, Minshall S 1957 Phys. Rev. 108 1207

    [11]

    Asay J R 1974 J. Appl. Phys. 45 4441

    [12]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [13]

    Johnson J N, Hayes D B, Asay J R 1974 J. Phys. Chem. Solids 35 501

    [14]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [15]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [16]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [17]

    Cox G A Shock Compression of Condensed Matter-2007 Hawai'i, America, June 24-29, 2007 p151

    [18]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波, 周显明, 谭华 2008 物理学报 57 2347]

    [19]

    Weng J, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [20]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [21]

    Ma Y, Li Z R, Hu S L, Li J B, Wang X S, Chen H, Weng J D, Liu J, Yu Y Y, Song P, Xiang Y M 2007 Chinese Journal of High Pressure Physics 21 397 (in Chinese) [马云, 李泽仁, 胡绍楼, 李加波, 汪小松, 陈宏, 翁继东, 刘俊, 俞宇寅, 宋萍, 向曜民 2007 高压物理学报 21 397]

    [22]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p162 (in Chinese) [谭华 2006 实验冲击波物理导引 (北京: 国防工业出版社) 第162页]

    [23]

    Yu Y Y, Tan H, Dai C D, Hu J B, Chen D N 2005 Chin. Phys. Lett. 22(7) 1742

    [24]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100(B1) 529

    [25]

    Carter W J 1973 High Temp.-High Press. 5 316

    [26]

    Mabire C, Hereil P L 1999 Shock Compression of Condensed Matter-1999 Utah, America, June 27-July 2, 1999 p93

    [27]

    Resséuier T D, Hallouin M 2008 Phys. Rev. B 77 174107

  • [1]

    Duvall G E, Graham R A 1977 Rev. Mod. Phys. 49 523

    [2]

    Bass J D, Ahrens T J, Abelson J R, Tan H 1990 J. Geophys. Res. 95 21767

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [5]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911

    [6]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [7]

    Brown J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496

    [8]

    Liu X, Zhou X M, Li J, Li J B, Cao X X 2010 Acta Phys. Sin. 59 5626 (in Chinese) [刘勋, 周显明, 李俊, 李加波, 操秀霞 2010 物理学报 59 5626]

    [9]

    Tonkov E Y, Ponyatovsky E G 2005 Transformations of Elements under High Pressure (Florida: CRC PRESS) p148

    [10]

    Duff R E, Minshall S 1957 Phys. Rev. 108 1207

    [11]

    Asay J R 1974 J. Appl. Phys. 45 4441

    [12]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [13]

    Johnson J N, Hayes D B, Asay J R 1974 J. Phys. Chem. Solids 35 501

    [14]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [15]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [16]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [17]

    Cox G A Shock Compression of Condensed Matter-2007 Hawai'i, America, June 24-29, 2007 p151

    [18]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波, 周显明, 谭华 2008 物理学报 57 2347]

    [19]

    Weng J, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [20]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [21]

    Ma Y, Li Z R, Hu S L, Li J B, Wang X S, Chen H, Weng J D, Liu J, Yu Y Y, Song P, Xiang Y M 2007 Chinese Journal of High Pressure Physics 21 397 (in Chinese) [马云, 李泽仁, 胡绍楼, 李加波, 汪小松, 陈宏, 翁继东, 刘俊, 俞宇寅, 宋萍, 向曜民 2007 高压物理学报 21 397]

    [22]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p162 (in Chinese) [谭华 2006 实验冲击波物理导引 (北京: 国防工业出版社) 第162页]

    [23]

    Yu Y Y, Tan H, Dai C D, Hu J B, Chen D N 2005 Chin. Phys. Lett. 22(7) 1742

    [24]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100(B1) 529

    [25]

    Carter W J 1973 High Temp.-High Press. 5 316

    [26]

    Mabire C, Hereil P L 1999 Shock Compression of Condensed Matter-1999 Utah, America, June 27-July 2, 1999 p93

    [27]

    Resséuier T D, Hallouin M 2008 Phys. Rev. B 77 174107

计量
  • 文章访问数:  3981
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-26
  • 修回日期:  2012-08-28
  • 刊出日期:  2013-02-05

金属Bi的卸载熔化实验研究

  • 1. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理重点实验室, 绵阳 621900
    基金项目: 

    中国工程物理研究院双百人才工程(批准号: ZX01115)、国防基础科研项目(批准号: B1520110001) 和国家自然科学基金 (批准号:10972206) 资助的课题.

摘要: 在火炮上利用金属铋(Bi)直接撞击单晶LiF窗口, 开展了金属Bi反向碰撞的冲击加载-卸载实验研究, 实验采用激光位移干涉测试系统, 获得了金属Bi在11—16 GPa压力范围内完整的卸载粒子速度剖面. 实验结果结合特征线方法计算表明, 金属Bi经冲击加载进入体心立方相, 并在11—16 GPa冲击压力作用下发生了卸载熔化, 界面粒子速度剖面的卸载拐点, 对应着金属Bi经冲击加载后发生的卸载熔化, 而这一结论同Cox的理论计算及一维流体力学程序计算结果基本一致. 本文报道的金属Bi卸载波剖面解读技术, 对于认识冲击加载下其他相似材料相变具有实用价值.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回