搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu偏析诱导Co团簇结构及性质异常的动力学模拟

孙凌涛 郭朝中 肖绪洋

引用本文:
Citation:

Cu偏析诱导Co团簇结构及性质异常的动力学模拟

孙凌涛, 郭朝中, 肖绪洋

Dynamics simulation on the segregations of Cu induced Co-based cluster structures and their properties

Sun Ling-Tao, Guo Chao-Zhong, Xiao Xu-Yang
PDF
导出引用
  • 采用分子动力学结合镶嵌原子势方法, 模拟研究了Cu原子分别分布于基体Co团簇内层和表面构成Cu-Co合金团簇的结构和热力学性质, 研究表明, 相同数目的Cu原子掺杂到基体中因掺杂层的不同, 会诱导内层Co团簇和外层Co团簇结构、能量及熔点表现出巨大差异; Cu原子在团簇各层掺杂位置的差异, 会导致原子向低能态位置偏移, 但相对移动后后续原子的补位, 使团簇结构随温度呈相对无扩散度相变; Cu原子由内层向表面偏析是内层Co团簇与相同原子数比例的外层Co团簇熔点产生巨大差异的主要原因.
    The structure and thermodynamic properties of Cu-Co alloy cluster with Cu atoms distributed in inner layer and outer surface of Co cluster are investigated by the molecular dynamics simulation combining with an embedded atom potential method. The results demonstrate that there are huge differences in structure, energy and melting point between the inner layer and outer surface of Co clusters due to various doping layers comprised of the same number of Cu atoms. The different doping positions of Cu atoms in Co cluster make atoms shift towards lower energy state. However, after relative movement, the supplementary deposition of subsequent atoms leads to the relatively non-diffusive phase transformation of cluster structure. The segregations of Cu atoms from inner layer to outer surface of Co cluster are the main reason for the enormous difference in melting point between the inner layer and outer surface of Co clusters with the same percentage of Cu atoms.
      通信作者: 孙凌涛, cquptslt@163.com;guochaozhong1987@163.com ; 郭朝中, cquptslt@163.com;guochaozhong1987@163.com
    • 基金项目: 国家自然科学基金(批准号: 21573030)、重庆市基础与前沿研究计划一般项目(批准号: cstc2015jcyjA50032, cstc2014jcyjA50038)、 重庆市教委科学技术研究项目(批准号: KJ1501118)、重庆市高校微纳米材料工程与技术重点实验室度开放课题(批准号: KFJJ1404)、重庆文理学院一般项目(批准号: Y2015XC23)和重庆文理学院引进人才项目(批准号: R2014CJ02)资助的课题.
      Corresponding author: Sun Ling-Tao, cquptslt@163.com;guochaozhong1987@163.com ; Guo Chao-Zhong, cquptslt@163.com;guochaozhong1987@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21573030), the Basic and Frontier Research Program of Chongqing Municipality, China (Grant Nos. cstc2015jcyjA50032, cstc2014jcyjA50038), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1501118), the Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, China (Grant No. KFJJ1404), the Scientific Research Project of Chongqing University of Arts and Science, China (Grant No. Y2015XC23), and the Talent Introduction Project (Grant No. R2014CJ02) of Chongqing University of Arts and Sciences, China.
    [1]

    Wang G H 2003 Cluster Physics (Shanghai: Shanghai Scientific Technical Publisher) (in Chinese) [王广厚 2003 团簇物理学(上海: 上海科学技术出版社)]

    [2]

    Kart H H, Yildirim H, Kart S O, ağin T 2014 Mater. Chem. Phys. 147 204

    [3]

    Xiao X Y 2010 Chin. Phys. B 19 113604

    [4]

    Parsina I, Baletto F 2010 J. Phys. Chem. C 114 1504

    [5]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [6]

    Chushak Y G, Bartell L S 2003 J. Phys. Chem. B 107 3747

    [7]

    Fromen M C, Morillo J, Casanove M J, Lecante P 2006 Epl-Europhys. Lett. 73 885

    [8]

    Li G J, Wang Q, Liu T, Li D G, Lu X, He J C 2009 Chin. Phys. Lett. 26 036104

    [9]

    Wang Q, Li G J, Li D G, L X, He J C 2009 Chin. Phys. B 18 1843

    [10]

    Parsina I, Baletto F 2010 J. Phys. Chem. C 114 1504

    [11]

    Kim H Y, Kim H G, Kim D H, Lee H M 2008 J. Phys. Chem. C 112 17138

    [12]

    Xiao X Y 2011 Chin. Sci. Bull. 56 2741 (in Chinese) [肖绪洋 2011 科学通报 56 2741]

    [13]

    Xiao X Y, Shi D P, Xia J H, Cheng Z F 2013 Nano 8 1350065

    [14]

    Pryadchenko V V, Srabionyan V V, Mikheykina E B, Avakyan L A, Murzin V Y, Zubavichus Y V, Zizak Z, Guterman V E, Bugaev L A 2015 J. Phys. Chem. C 119 3217

    [15]

    Bohra M, Grammatikopoulos P, Diaz R E, Singh V, Zhao J L, Bobo J F, Kuronen A, Djurabekova F, Nordlund K, Sowwan M 2015 Chem. Mater. 27 3216

    [16]

    Nanda K K, Sahu S N, Behera S N 2002 Phys. Rev. A 66 013208

    [17]

    Li G J, Wang Q, Li D G, L X, He J C 2008 Phys. Lett. A 372 6764

    [18]

    Li G J, Wang Q, Wang K, Liu T, Li D G, He J C 2009 Model. Simul. Mater. Sci. 17 055005

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Perford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta. Mater. 49 4005

    [20]

    Sun L T, Shi D P 2015 J. At. Mol. Phys. 32 586 (in Chinese) [孙凌涛, 石东平 2015 原子与分子物理学报 32 586]

    [21]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

  • [1]

    Wang G H 2003 Cluster Physics (Shanghai: Shanghai Scientific Technical Publisher) (in Chinese) [王广厚 2003 团簇物理学(上海: 上海科学技术出版社)]

    [2]

    Kart H H, Yildirim H, Kart S O, ağin T 2014 Mater. Chem. Phys. 147 204

    [3]

    Xiao X Y 2010 Chin. Phys. B 19 113604

    [4]

    Parsina I, Baletto F 2010 J. Phys. Chem. C 114 1504

    [5]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [6]

    Chushak Y G, Bartell L S 2003 J. Phys. Chem. B 107 3747

    [7]

    Fromen M C, Morillo J, Casanove M J, Lecante P 2006 Epl-Europhys. Lett. 73 885

    [8]

    Li G J, Wang Q, Liu T, Li D G, Lu X, He J C 2009 Chin. Phys. Lett. 26 036104

    [9]

    Wang Q, Li G J, Li D G, L X, He J C 2009 Chin. Phys. B 18 1843

    [10]

    Parsina I, Baletto F 2010 J. Phys. Chem. C 114 1504

    [11]

    Kim H Y, Kim H G, Kim D H, Lee H M 2008 J. Phys. Chem. C 112 17138

    [12]

    Xiao X Y 2011 Chin. Sci. Bull. 56 2741 (in Chinese) [肖绪洋 2011 科学通报 56 2741]

    [13]

    Xiao X Y, Shi D P, Xia J H, Cheng Z F 2013 Nano 8 1350065

    [14]

    Pryadchenko V V, Srabionyan V V, Mikheykina E B, Avakyan L A, Murzin V Y, Zubavichus Y V, Zizak Z, Guterman V E, Bugaev L A 2015 J. Phys. Chem. C 119 3217

    [15]

    Bohra M, Grammatikopoulos P, Diaz R E, Singh V, Zhao J L, Bobo J F, Kuronen A, Djurabekova F, Nordlund K, Sowwan M 2015 Chem. Mater. 27 3216

    [16]

    Nanda K K, Sahu S N, Behera S N 2002 Phys. Rev. A 66 013208

    [17]

    Li G J, Wang Q, Li D G, L X, He J C 2008 Phys. Lett. A 372 6764

    [18]

    Li G J, Wang Q, Wang K, Liu T, Li D G, He J C 2009 Model. Simul. Mater. Sci. 17 055005

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Perford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta. Mater. 49 4005

    [20]

    Sun L T, Shi D P 2015 J. At. Mol. Phys. 32 586 (in Chinese) [孙凌涛, 石东平 2015 原子与分子物理学报 32 586]

    [21]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究. 物理学报, 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [3] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [4] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [5] 王志萍, 朱云, 吴鑫, 吴亚敏. CO分子在线性极化飞秒激光场中的TDDFT研究. 物理学报, 2013, 62(23): 233102. doi: 10.7498/aps.62.233102
    [6] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [7] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [8] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [9] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [10] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [11] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [12] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [13] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [14] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [15] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [16] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究. 物理学报, 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [17] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
计量
  • 文章访问数:  6183
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 修回日期:  2016-04-12
  • 刊出日期:  2016-06-05

/

返回文章
返回