搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaN/GaN量子阱垒层和阱层厚度对GaN基激光器性能的影响及机理

周梅 赵德刚

引用本文:
Citation:

InGaN/GaN量子阱垒层和阱层厚度对GaN基激光器性能的影响及机理

周梅, 赵德刚

Barrier and well thickness designing of InGaN/GaN multiple quantum well for better performances of GaN based laser diode

Zhou Mei, Zhao De-Gang
PDF
导出引用
  • 采用LASTIP软件研究了InGaN/GaN(In组分为15%)量子阱垒层和阱层厚度对GaN基蓝紫光激光器性能的影响及机理. 模拟计算结果表明, 当阱层太薄或太厚时, GaN基激光器的阈值电流增加、输出功率下降, 最优的阱层厚度为4.0 nm左右; 当阱层厚度太薄时, 载流子很容易泄漏, 而当阱层厚度太厚时, 极化效应导致发光效率降低, 研究还发现, 与垒层厚度为7 nm 相比, 垒层厚度为15 nm时激光器的阈值电流更低、输出功率更高, 因此适当地增加垒层厚度能显著抑制载流子泄漏, 从而改善激光器性能.
    The effects of barrier and well thickness in InGaN/GaN (with in content of 15%) multiple quantum well (MQW) on the performances of GaN based laser diode (LD) are investigated by using LASTIP software, and the relevant physical mechanisms are discussed. It is found that when the barrier-thickness in InGaN/GaN MQW is fixed to be 7 nm, for the well thickness values of 3.0, 3.5, 4.0, 4.5, and 5.0 nm, the threshold currents of LD are 76.31, 67.96, 57.60, 64.62, and 74.59 mA, and the output light powers of LD are 12.05, 15.64, 24.70, 18.21, and 11.35 mW under an injection current of 100 mA, respectively. It indicates that too thick or too thin well may lead to a higher threshold current and a lower output power of GaN based LD. A high performance device can be obtained by using an optimized well thickness of around 4.0 nm. It is found that the LD performance is degraded by using too thin well in the device structure mainly due to the high leakage current, while strong polarization will lead to the decrease of overlap integral and luminescence intensity if the well layer is too thick, and thus a poor performance is obtained. It is found that the LD performance can be improved obviously by appropriately increasing barrier thickness from 7 nm to 15 nm. When the barrier thickness in InGaN/GaN MQW is fixed at 15 nm and the well thickness values are 3.0, 3.5, 4.0, 4.5 and 5.0 nm, the threshold currents of LD are 59.54, 52.42, 52.17, 51.38, and 58.99 mA, and the output light powers of LD are 36.12, 39.69, 40.79, 40.27, and 33.19 mW under an injection current of 100 mA, respectively, i.e., LD device parameters are improved. It suggests that the higher performances of GaN based laser diode can be realized by appropriately increasing the thickness of barrier when the thickness of well is optimized to be around 4 nm.
      通信作者: 赵德刚, dgzhao@red.semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61474142)资助的课题.
      Corresponding author: Zhao De-Gang, dgzhao@red.semi.ac.cn
    • Funds: Projects Project supported by the National Natural Science Foundation of China (Grant No. 61474142).
    [1]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [2]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y, Kiyoku H 1997 Appl. Phys. Lett. 70 1417

    [3]

    Nakamura S 1998 Science 281 956

    [4]

    Hardy M T, Feezell D F, DenBaars S P, Nakamura S 2011 Mater. Today 14 408

    [5]

    Yang H, Chen L H, Zhang S M 2005 J. Semicond. 26 414

    [6]

    Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S, Yang H 2009 Chin. Phys. B 18 5350

    [7]

    Ji L, Jiang D S, Zhang S M, Liu Z S, Zeng C, Zhao D G, Zhu J J, Wang H, Duan L H, Yang H 2010 Chin. Phys. B 19 124211

    [8]

    Liu J P, Li Z C, Zhang L Q, Zhang F, Tian A Q, Zhou K, Li D Y, Zhang S M, Yang H 2014 Appl. Phys. Express 7 111001

    [9]

    Chen P, Feng M X, Jiang D S, Zhao D G, Liu Z S, Li L, Wu L L, Le L C, Zhu J J, Wang H, Zhang S M, Yang H 2012 J. Appl. Phys. 112 113105

    [10]

    Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M, Yang H 2014 Opt. Express 22 11392

    [11]

    Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M, Liu W 2016 J. Semicond. 37 014007

    [12]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [13]

    Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Jia Z, Saito M, Nakamura S, DenBaars S P, Speck J S, Fujito K 2007 Appl. Phys. Lett. 91 181120

    [14]

    Bai J, Wang T, Sakai S 2000 J. Appl. Phys. 88 4729

    [15]

    Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Amano H, Akasaki I 1997 Jpn. J. Appl. Phys. 36 L382

    [16]

    Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I 1998 Appl. Phys. Lett. 73 1691

    [17]

    Nardelli M B, Rapcewicz K, Bernholc J 1997 Appl. Phys. Lett. 71 3135

    [18]

    Hansen M, Piprek J, Pattison P M, Speck J S, Nakamura S, DenBaars S P 2002 Appl. Phys. Lett. 81 4275

    [19]

    Kuo Y K, Chang Y A 2004 IEEE J. Quantum Electron. 40 437

    [20]

    Goto O, Tomiya S, Hoshina Y, Tanaka T, Ohta M, Ohizumi Y, Yabuki Y, Funato K, Ikeda M 2007 Proc. SPIE 6485 64850Z

  • [1]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [2]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y, Kiyoku H 1997 Appl. Phys. Lett. 70 1417

    [3]

    Nakamura S 1998 Science 281 956

    [4]

    Hardy M T, Feezell D F, DenBaars S P, Nakamura S 2011 Mater. Today 14 408

    [5]

    Yang H, Chen L H, Zhang S M 2005 J. Semicond. 26 414

    [6]

    Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S, Yang H 2009 Chin. Phys. B 18 5350

    [7]

    Ji L, Jiang D S, Zhang S M, Liu Z S, Zeng C, Zhao D G, Zhu J J, Wang H, Duan L H, Yang H 2010 Chin. Phys. B 19 124211

    [8]

    Liu J P, Li Z C, Zhang L Q, Zhang F, Tian A Q, Zhou K, Li D Y, Zhang S M, Yang H 2014 Appl. Phys. Express 7 111001

    [9]

    Chen P, Feng M X, Jiang D S, Zhao D G, Liu Z S, Li L, Wu L L, Le L C, Zhu J J, Wang H, Zhang S M, Yang H 2012 J. Appl. Phys. 112 113105

    [10]

    Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Yang J, He X G, Li X J, Liu J P, Zhu J J, Zhang S M, Yang H 2014 Opt. Express 22 11392

    [11]

    Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M, Liu W 2016 J. Semicond. 37 014007

    [12]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 10024

    [13]

    Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Jia Z, Saito M, Nakamura S, DenBaars S P, Speck J S, Fujito K 2007 Appl. Phys. Lett. 91 181120

    [14]

    Bai J, Wang T, Sakai S 2000 J. Appl. Phys. 88 4729

    [15]

    Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Amano H, Akasaki I 1997 Jpn. J. Appl. Phys. 36 L382

    [16]

    Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I 1998 Appl. Phys. Lett. 73 1691

    [17]

    Nardelli M B, Rapcewicz K, Bernholc J 1997 Appl. Phys. Lett. 71 3135

    [18]

    Hansen M, Piprek J, Pattison P M, Speck J S, Nakamura S, DenBaars S P 2002 Appl. Phys. Lett. 81 4275

    [19]

    Kuo Y K, Chang Y A 2004 IEEE J. Quantum Electron. 40 437

    [20]

    Goto O, Tomiya S, Hoshina Y, Tanaka T, Ohta M, Ohizumi Y, Yabuki Y, Funato K, Ikeda M 2007 Proc. SPIE 6485 64850Z

  • [1] 曹文彧, 张雅婷, 魏彦锋, 朱丽娟, 徐可, 颜家圣, 周书星, 胡晓东. 超晶格插入层对InGaN/GaN多量子阱的应变调制作用. 物理学报, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [3] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究. 物理学报, 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [4] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究. 物理学报, 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [5] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [6] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [7] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [8] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [9] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [10] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [11] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 引入n型InGaN/GaN超晶格层提高量子阱特性研究. 物理学报, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [12] 顾晓玲, 郭 霞, 吴 迪, 李一博, 沈光地. 表面InGaN厚度对GaN基发光二极管特性的影响. 物理学报, 2008, 57(2): 1220-1223. doi: 10.7498/aps.57.1220
    [13] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [14] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [15] 丁志博, 王 琦, 王 坤, 王 欢, 陈田祥, 张国义, 姚淑德. InGaN/GaN多量子阱的组分确定和晶格常数计算. 物理学报, 2007, 56(5): 2873-2877. doi: 10.7498/aps.56.2873
    [16] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [17] 戴 涛, 刘玉资, 张 泽. 电子全息方法测定GaN/AlGaN多量子阱结构的极性. 物理学报, 2006, 55(11): 5829-5834. doi: 10.7498/aps.55.5829
    [18] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究. 物理学报, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
    [19] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] 张纪才, 王建峰, 王玉田, 杨 辉. In源流量与Ⅲ族流量之比对InGaN/GaN多量子阱性质的影响. 物理学报, 2004, 53(8): 2467-2471. doi: 10.7498/aps.53.2467
计量
  • 文章访问数:  8218
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-04-05

/

返回文章
返回