搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-Fe中氦泡极限压强的分子动力学模拟

李翔 尹益辉 张元章

引用本文:
Citation:

α-Fe中氦泡极限压强的分子动力学模拟

李翔, 尹益辉, 张元章

Molecular dynamics simulation of helium bubble ultimate pressure in α-Fe

Li Xiang, Yin Yi-Hui, Zhang Yuan-Zhang
PDF
HTML
导出引用
  • 为了深入认识α-Fe中氦泡冲出位错环的微观机制, 有必要研究α-Fe中氦泡冲出位错环时的极限压强特性. 本文建立金属-氦泡的立方体型代表性体积单元模型, 针对8种不同初始半径的球形氦泡, 以初始氦空位比为变量, 开展分子动力学模拟, 得到了各模型中位错环开始形成时的氦泡极限压强和临界氦空位比. 研究结果表明: 对于无量纲半径介于2—10的氦泡, 冲出位错环时的氦泡极限压强和临界氦空位比均随着氦泡初始半径的增大而非线性减小; 基体中氦泡冲出位错环时的临界氦空位比具有明显的尺寸效应; 初始时刻(0 ps), 在经过立方体型模型中心的横截面上, 氦泡周围Fe原子阵列的剪应力集中和最大剪应力出现在对角线与氦泡边界交点(即45°)处, 并且关于横截面上平行于边的两条对折线对称分布, 剪应力集中区的范围和最大剪应力均随着初始氦空位比的增大而增大; 位错环冲出方向对应最大剪应力方向. 本文的研究加深了对金属中氦泡物理特性的认识, 为后续分析氦泡对材料宏观物理和力学性质的影响奠定了有益的基础.
    In order to understand further the micro-mechanism of helium bubble punching out of the dislocation loop in α-Fe, it is necessary to study the ultimate pressure characteristics of helium bubble punching out of the dislocation loop. In this paper, a cubic representative volume element (RVE) model of the metal-helium bubble is established. For eight types of spherical helium bubbles with different initial radii, molecular dynamics simulations are carried out with the initial helium-to-vacancy ratio serving as a variable and the ultimate pressure of helium bubble and the critical helium-to-vacancy ratio at the beginning of dislocation loop formation in each model are obtained. The results show that for helium bubbles with dimensionless radius ranging from 2 to 10, both the ultimate pressure and the critical helium-to-vacancy ratio of helium bubble punching out of the dislocation loop decrease nonlinearly with the increase of initial helium bubble radius. The relationships of the ultimate pressure and the critical helium-to-vacancy ratio with the initial radius of helium bubble are fitted respectively according to the simulation results and the fitted two equations are in good agreement with the results of previous theoretical studies. The critical helium-to-vacancy ratio required for helium bubble punching out of the dislocation loop in α-Fe has an obvious size effect. For the helium bubble in the late nucleation stage (e.g. helium bubble with an initial radius of 0.81 nm) and non-ideal gas stage (e.g. helium bubble with an initial radius ranging from 1.00 nm to 2.50 nm), the critical helium-to-vacancy ratios for punching out of the dislocation loop are the same as the initial helium-to-vacancy ratio corresponding to the peak pressure point of helium bubble. But for early or middle nucleation stage, such as helium bubble with an initial radius of 0.50 nm, the critical helium-to-vacancy ratio for punching out of the dislocation loop is about 13.46% greater than the initial helium-to-vacancy ratios corresponding to the peak pressure points. At the initial moment (0 ps), in the cross section passing through the center of cubic RVE, the shear stress is concentrated, and the maximum shear stress of Fe atom array around the helium bubble is located at the intersection points (i.e. at 45°) of diagonal and helium bubble boundary, and it is distributed symmetrically with respect to the double fold lines of the cross section parallel to the sides. Both the range of shear stress concentrating area and the maximum shear stress increase with the initial helium-to-vacancy ratio increasing. The dislocation loop’s punching direction corresponds to the direction of the maximum shear stress. The research in this paper can deepen the understanding of the physical properties of helium bubbles in metals and lay a useful foundation for the subsequent analyzing of the effects of helium bubbles on the macroscopic physical and mechanical properties of materials.
      通信作者: 尹益辉, yinyh@caep.cn
    • 基金项目: 国家自然科学基金(批准号: 11572298)和国家自然科学基金青年科学基金(批准号: 11702280)资助的课题
      Corresponding author: Yin Yi-Hui, yinyh@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572298) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11702280)
    [1]

    王佩璇, 宋家树 2002 材料中的氦及氚渗透 (第1版) (北京: 国防工业出版社) 第1−52页

    Wang P X, Song J S 2002 Helium and Permeation of Tritium in Materials (1st Ed.) (Bejing: National Defense Industry Press) pp1−52

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Barnes R S 1965 Nature 206 1307Google Scholar

    [4]

    Wang Z J, Allen F I, Shan Z W, Hosemann P 2016 Acta Mater. 121 78Google Scholar

    [5]

    彭述明, 王和义 2015 氚化学与工艺学 (第1版) (北京: 国防工业出版社) 第1−51页

    Peng S M, Wang H Y 2015 Tritium Chemistry and Technology (1st Ed.) (Bejing: National Defense Industry Press) pp1−51

    [6]

    刘远东, 尹益辉, 谭云, 孙颖, 梅军 2011 中国科学 技术科学 54 1Google Scholar

    Liu Y D, Yin Y H, Tan Y, Sun Y, Mei J 2011 Sci. China Tech. Sci. 54 1Google Scholar

    [7]

    刘远东, 尹益辉, 谭云 2012 物理学报 61 156601Google Scholar

    Liu Y D, Yin Y H, Tan Y 2012 Acta Phys. Sin. 61 156601Google Scholar

    [8]

    尹益辉, 刘远东, 陈长安, 谭云 2016 中国科学 技术科学 46 1071Google Scholar

    Yin Y H, Liu Y D, Chen C A, Tan Y 2016 Sci. Sin. Tech. 46 1071Google Scholar

    [9]

    Liu P P, Zhan Q, Fu Z Y, Wei Y P, Wang Y M, Wang F M, Ohnuki S, Wan F R 2015 J. Alloys Compd. 649 859Google Scholar

    [10]

    Krsjak V, Degmova J, Sojak S, Slugen V 2018 J. Nucl. Mater. 499 38Google Scholar

    [11]

    Taverna D, Kociak M, Stéphan O, Fabre A, Finot E, Décamps B, Colliex C 2008 Phys. Rev. Lett. 100 035301Google Scholar

    [12]

    Fréchard S, Walls M, Kociak M, Chevalier J P, Henry J, Gorse D 2009 J. Nucl. Mater. 393 102Google Scholar

    [13]

    Trinkaus H 1983 Radiat. Eff. 78 189Google Scholar

    [14]

    郭立平, 罗凤凤, 于雁霞 2017 核材料辐照位错环 (第1版) (北京: 国防工业出版社) 第174−200页

    Guo L P, Luo F F, Yu Y X 2017 Dislocation Loops in Irradiated Nuclear Materials (1st Ed.) (Bejing: National Defense Industry Press) pp174−200

    [15]

    Wolfer W G 1988 Philos. Mag. A 58 285Google Scholar

    [16]

    Zhang Y, Yin Y, Zhao F, Deng K, Feng J, Li J, Yan G 2019 Steel Res. Int. 90 1Google Scholar

    [17]

    Deng H Q, Hu W Y, Gao F, Heinisch H L, Hu S Y, Li Y L, Kurtz R J 2013 J. Nucl. Mater. 442 667Google Scholar

    [18]

    Gao C, Tian D, Li M, Qian D 2018 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 418 46Google Scholar

    [19]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105Google Scholar

    [20]

    Hetherly J, Martinez E, Nastasi M, Caro A 2011 J. Nucl. Mater. 419 201Google Scholar

    [21]

    Caro A, Hetherly J, Stukowski A, Caro M, Martinez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261Google Scholar

    [22]

    Xie H, Gao N, Xu K, Lu G H, Yu T, Yin F 2017 Acta Mater. 141 10Google Scholar

    [23]

    Caskey G R 1985 Fusion Technol. 8 2293Google Scholar

    [24]

    Edmondson P D, Parish C M, Zhang Y, Hallén A, Miller M K 2013 J. Nucl. Mater. 434 210Google Scholar

    [25]

    Zhang F, Wang X, Wierschke J B, Wang L 2015 Scr. Mater. 109 28Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺 2015 物理学报 64 046103Google Scholar

    Liang L, Tan X H, Xiang W, Wang Y, Cheng Y L, Ma M W 2015 Acta Phys. Sin. 64 046103Google Scholar

    [28]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 J. Phys. Condens. Matter 16 S2629Google Scholar

    [29]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys.Rev.Lett 74 1586Google Scholar

    [30]

    Gao F, Deng H, Heinisch H L, Kurtz R J 2011 J. Nucl. Mater. 418 115Google Scholar

    [31]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267 3278Google Scholar

    [32]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [33]

    Rycroft, Chris H 2009 Chaos 19 41111Google Scholar

    [34]

    Mills R L, Liebenberg D H, Bronson J C 1980 Phys. Rev. B 21 5137Google Scholar

    [35]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [36]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 85007Google Scholar

    [37]

    Evans J H 1978 J. Nucl. Mater. 76–77 228Google Scholar

    [38]

    Martienssen W, Warlimont H 2005 Handbook of Condensed Matter and Materials Data (New York: Springer Berlin Heidelberg) pp132−134

    [39]

    Wolfer W G 1989 Philos. Mag. A 59 87Google Scholar

    [40]

    Iwakiri H 2000 J. Nucl. Mater. 283-287 1134Google Scholar

    [41]

    Donnelly S E 1985 Radiat. Eff. 90 1Google Scholar

    [42]

    Trinkaus H 1989 Scr. Metall. 23 1773Google Scholar

  • 图 1  含氦泡的α-Fe计算模型(图中He → He泡, Fe → Fe基体)

    Fig. 1.  Model of α-Fe with helium bubble (In Fig. He → helium bubble, Fe → Fe matrix).

    图 2  MD模拟结果与Mills等[34]的实验结果对比(300 K)

    Fig. 2.  Comparison of MD simulation results with experimental results of Mills et al.[34] (300 K).

    图 3  氦泡压强随初始氦空位比的变化

    Fig. 3.  Changes of pressure of helium bubble with initial helium-to-vacancy ratio.

    图 4  氦泡极限压强、临界氦空位比随氦泡初始半径的变化

    Fig. 4.  Changes of ultimate pressure and critical helium-to-vacancy ratio of helium bubble with initial radius of helium bubble.

    图 5  氦泡周围Fe原子阵列的剪应力分布 (a) nHe/nV = 1.50; (b) nHe/nV = 2.10; (c) nHe/nV = 2.50; (d) 上下限相同时0 ps处的原子应力分布

    Fig. 5.  Shear stress distribution of Fe atom array around helium bubble: (a) nHe/nV = 1.50; (b) nHe/nV = 2.10; (c) nHe/nV = 2.50; (d) atomic stress distribution at 0 ps with the same upper and lower limit.

    图 6  初始半径为1.31 nm, nHe/nV = 2.10时氦泡冲出的位错环在xy平面投影 (a) 88 ps; (b) 92 ps; (c) 100 ps; (d)删除图6(c)中Fe原子后带缺陷网格的位错图

    Fig. 6.  Projection of dislocation loops produced by helium bubbles in xy plane, when initial radius of helium bubble is 1.31 nm, nHe/nV = 2.10: (a) 88 ps; (b) 92 ps; (c) 100 ps; (d) a dislocation picture with a defect mesh after removing the Fe atoms in Fig. 6(c).

    图 7  (110)面原子剪应力分布(氦泡初始半径为1.31 nm, nHe/nV = 2.10)

    Fig. 7.  (110) Surface atomic shear stress distribution (initial radius of helium bubble is 1.31 nm, nHe/nV = 2.10).

    图 8  氦泡极限压强与氦泡初始半径关系

    Fig. 8.  Ultimate pressure vs. initial radius of helium bubble.

  • [1]

    王佩璇, 宋家树 2002 材料中的氦及氚渗透 (第1版) (北京: 国防工业出版社) 第1−52页

    Wang P X, Song J S 2002 Helium and Permeation of Tritium in Materials (1st Ed.) (Bejing: National Defense Industry Press) pp1−52

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Barnes R S 1965 Nature 206 1307Google Scholar

    [4]

    Wang Z J, Allen F I, Shan Z W, Hosemann P 2016 Acta Mater. 121 78Google Scholar

    [5]

    彭述明, 王和义 2015 氚化学与工艺学 (第1版) (北京: 国防工业出版社) 第1−51页

    Peng S M, Wang H Y 2015 Tritium Chemistry and Technology (1st Ed.) (Bejing: National Defense Industry Press) pp1−51

    [6]

    刘远东, 尹益辉, 谭云, 孙颖, 梅军 2011 中国科学 技术科学 54 1Google Scholar

    Liu Y D, Yin Y H, Tan Y, Sun Y, Mei J 2011 Sci. China Tech. Sci. 54 1Google Scholar

    [7]

    刘远东, 尹益辉, 谭云 2012 物理学报 61 156601Google Scholar

    Liu Y D, Yin Y H, Tan Y 2012 Acta Phys. Sin. 61 156601Google Scholar

    [8]

    尹益辉, 刘远东, 陈长安, 谭云 2016 中国科学 技术科学 46 1071Google Scholar

    Yin Y H, Liu Y D, Chen C A, Tan Y 2016 Sci. Sin. Tech. 46 1071Google Scholar

    [9]

    Liu P P, Zhan Q, Fu Z Y, Wei Y P, Wang Y M, Wang F M, Ohnuki S, Wan F R 2015 J. Alloys Compd. 649 859Google Scholar

    [10]

    Krsjak V, Degmova J, Sojak S, Slugen V 2018 J. Nucl. Mater. 499 38Google Scholar

    [11]

    Taverna D, Kociak M, Stéphan O, Fabre A, Finot E, Décamps B, Colliex C 2008 Phys. Rev. Lett. 100 035301Google Scholar

    [12]

    Fréchard S, Walls M, Kociak M, Chevalier J P, Henry J, Gorse D 2009 J. Nucl. Mater. 393 102Google Scholar

    [13]

    Trinkaus H 1983 Radiat. Eff. 78 189Google Scholar

    [14]

    郭立平, 罗凤凤, 于雁霞 2017 核材料辐照位错环 (第1版) (北京: 国防工业出版社) 第174−200页

    Guo L P, Luo F F, Yu Y X 2017 Dislocation Loops in Irradiated Nuclear Materials (1st Ed.) (Bejing: National Defense Industry Press) pp174−200

    [15]

    Wolfer W G 1988 Philos. Mag. A 58 285Google Scholar

    [16]

    Zhang Y, Yin Y, Zhao F, Deng K, Feng J, Li J, Yan G 2019 Steel Res. Int. 90 1Google Scholar

    [17]

    Deng H Q, Hu W Y, Gao F, Heinisch H L, Hu S Y, Li Y L, Kurtz R J 2013 J. Nucl. Mater. 442 667Google Scholar

    [18]

    Gao C, Tian D, Li M, Qian D 2018 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 418 46Google Scholar

    [19]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105Google Scholar

    [20]

    Hetherly J, Martinez E, Nastasi M, Caro A 2011 J. Nucl. Mater. 419 201Google Scholar

    [21]

    Caro A, Hetherly J, Stukowski A, Caro M, Martinez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261Google Scholar

    [22]

    Xie H, Gao N, Xu K, Lu G H, Yu T, Yin F 2017 Acta Mater. 141 10Google Scholar

    [23]

    Caskey G R 1985 Fusion Technol. 8 2293Google Scholar

    [24]

    Edmondson P D, Parish C M, Zhang Y, Hallén A, Miller M K 2013 J. Nucl. Mater. 434 210Google Scholar

    [25]

    Zhang F, Wang X, Wierschke J B, Wang L 2015 Scr. Mater. 109 28Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺 2015 物理学报 64 046103Google Scholar

    Liang L, Tan X H, Xiang W, Wang Y, Cheng Y L, Ma M W 2015 Acta Phys. Sin. 64 046103Google Scholar

    [28]

    Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V 2004 J. Phys. Condens. Matter 16 S2629Google Scholar

    [29]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys.Rev.Lett 74 1586Google Scholar

    [30]

    Gao F, Deng H, Heinisch H L, Kurtz R J 2011 J. Nucl. Mater. 418 115Google Scholar

    [31]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267 3278Google Scholar

    [32]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [33]

    Rycroft, Chris H 2009 Chaos 19 41111Google Scholar

    [34]

    Mills R L, Liebenberg D H, Bronson J C 1980 Phys. Rev. B 21 5137Google Scholar

    [35]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [36]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 85007Google Scholar

    [37]

    Evans J H 1978 J. Nucl. Mater. 76–77 228Google Scholar

    [38]

    Martienssen W, Warlimont H 2005 Handbook of Condensed Matter and Materials Data (New York: Springer Berlin Heidelberg) pp132−134

    [39]

    Wolfer W G 1989 Philos. Mag. A 59 87Google Scholar

    [40]

    Iwakiri H 2000 J. Nucl. Mater. 283-287 1134Google Scholar

    [41]

    Donnelly S E 1985 Radiat. Eff. 90 1Google Scholar

    [42]

    Trinkaus H 1989 Scr. Metall. 23 1773Google Scholar

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [2] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [3] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [4] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [6] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [7] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [9] 杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋. He离子辐照6H-SiC引入缺陷的光谱研究. 物理学报, 2014, 63(21): 216101. doi: 10.7498/aps.63.216101
    [10] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [11] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [12] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [13] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [14] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [15] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚. 基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 物理学报, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [16] 郑 晖. 氦泡生长实验数据的反演模拟计算方法. 物理学报, 2007, 56(1): 389-394. doi: 10.7498/aps.56.389
    [17] 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究. 物理学报, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [18] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [19] 张崇宏, 陈克勤, 王引书, 孙继光. 2.5MeV的He+离子辐照316L不锈钢中氦泡的形核与生长研究. 物理学报, 1997, 46(9): 1774-1781. doi: 10.7498/aps.46.1774
    [20] 冉启泽. 简单可靠的氦液面计. 物理学报, 1976, 25(3): 270-270. doi: 10.7498/aps.25.270
计量
  • 文章访问数:  5337
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-11-19
  • 上网日期:  2021-03-30
  • 刊出日期:  2021-04-05

/

返回文章
返回