搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基底支撑刚度梯度变化对石墨烯层间摩擦力的影响

董赟 段早琦 陶毅 Gueye Birahima 张艳 陈云飞

引用本文:
Citation:

基底支撑刚度梯度变化对石墨烯层间摩擦力的影响

董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞

Influence of stiffness gradient on friction between graphene layers

Dong Yun, Duan Zao-Qi, Tao Yi, Gueye Birahima, Zhang Yan, Chen Yun-Fei
PDF
导出引用
  • 基于纳米摩擦能耗理论,利用分子动力学方法建立了公度接触下支撑刚度梯度变化的石墨烯层间摩擦力模型,分析了基底质心刚度和支撑刚度梯度变化对基底和薄片各接触区摩擦能耗的贡献.结果表明:软边界区始终贡献驱动力;硬边界区贡献的摩擦力最大,且随着支撑刚度的增大,硬边界区对总摩擦的贡献比也越高.各接触区的摩擦力是薄片和基底之间的褶皱势和接触区产生的法向变形差两部分的共同作用.前者是公度接触下阻碍滑移的界面势垒和刚度梯度方向上不同刚度支撑原子热振动引起的势梯度;后者是接触边界过渡区两侧原子的非对称变形和自由度约束突变引起的非平衡边界势垒相耦合的结果.本文对研究公度接触下刚度梯度支撑的纳米器件的相对运动规律有指导意义.
    According to the molecular dynamics simulations and the mechanism of energy dissipation of nanofriction, we construct a model system with a flake sliding in commensurate configuration on a monolayer suspended graphene anchored on a bed of springs. The system is to analyze the contributions of different regions (T1-T7) of the graphene flake to friction force, with the substrate characterized by different stiffness gradients and midpoint stiffness.
    The results indicate that the soft region of contact (T1) always contributes to the driving force, whereas the hard region (T7) leads to the biggest friction force on all column atoms of the flake. Moreover, as the support stiffness increases, when the stiffness gradient and the midpoint stiffness are equal to 1.34 nN/nm2 and 12 nN/nm, respectively, the contribution ratio of T7 to the total friction increases from 33% to 47%, which is approximately 4-15 times greater than those of each column atoms in T3-T6. The results also indicate that the energy barrier decreases with the increase of support stiffness along the stiffness gradient direction of the substrate, which induces the resistance forces on the relative motion to decrease. Meanwhile, the amplitude of the thermal atomic fluctuation is higher in the softer region while lower in the harder one. This difference in amplitude leads to the considerable potential gradient that ultimately causes the driving force. Finally, for a given point at the end of the flake (T1 or T7), the intensity of the van der Waals potential field is mainly determined by the nearest substrate atoms at that point. Part of these nearest atoms lie inside the contact region while the others do not. Consequently, the thermal vibration of the atoms inside the contact region is different from that of the atoms outside the confinement. The different thermal vibrations induce the greater edge barriers. In addition, T1 lies in the soft edge region and T7 in the hard one. As a result, the normal deformations of these two regions are always different, and therefore they also generate the driving force.
    At these points, the results reported here suggest that the friction force in each contact region is caused by the coupling of the energy barrier and the elastic deformation between the graphene surfaces. The former contribution, i.e.the energy barrier, includes the interfacial potential barrier in commensurate state which is against the sliding of the surfaces with respect to each other, and the potential gradient caused by the different vibration magnitudes of the substrate atoms against the different spring stiffness in the direction of stiffness gradient. The latter contribution, i.e. the elastic deformation, is the unbalanced edge energy barrier resulting from the asymmetrical deformation and the different degrees of freedom between the edge atoms of the slider and atoms inside and outside the contact area of the substrate. Results of this paper are expected to be able to provide theoretical guidance in considering the influence of stiffness gradient on friction between commensurate surfaces and in designing the nanodevices.
    [1]

    Krim J 1996 Sci. Am. 275 74

    [2]

    Ren S L, Yang S R, Zhao Y P 2003 Langmuir 19 2763

    [3]

    Ren S L, Yang S R, Wang J Q, Liu W M, Zhao Y P 2004 Chem. Mater. 16 428

    [4]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [5]

    Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C, Geng D, Yu Z, Zhang S, Wang W 2017 Nat. Commun. 8 14029

    [6]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [7]

    Geim A K 2009 Science 324 1530

    [8]

    de Wijn A S, Fusco C, Fasolino A 2010 Phys. Rev. E 81 046105

    [9]

    Xu Z, Li X, Yakobson B I, Ding F 2013 Nanoscale 5 6736

    [10]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652

    [11]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [12]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [13]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Urbakh M, Cheng Y, Zheng Q 2013 Phys. Rev. Lett. 110 255504

    [14]

    Berman D, Erdemir A, Sumant A V 2014 Mater. Today 17 31

    [15]

    Koren E, Lörtscher E, Rawlings C, Knoll A W, Duerig U 2015 Science 348 679

    [16]

    Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q 2012 Phys. Rev. Lett. 108 205503

    [17]

    Bailey S, Amanatidis I, Lambert C 2008 Phys. Rev. Lett. 100 256802

    [18]

    Guo Z, Chang T, Guo X, Gao H 2012 J. Mech. Phys. Solids 60 1676

    [19]

    Somada H, Hirahara K, Akita S, Nakayama Y 2008 Nano Lett. 9 62

    [20]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [21]

    Rurali R, Hernandez E 2010 Chem. Phys. Lett. 497 62

    [22]

    Chang T, Zhang H, Guo Z, Guo X, Gao H 2015 Phys. Rev. Lett. 114 015504

    [23]

    Filippov A E, Dienwiebel M, Frenken J W, Klafter J, Urbakh M 2008 Phys. Rev. Lett. 100 046102

    [24]

    Lebedeva I V, Knizhnik A A, Popov A M, Ershova O V, Lozovik Y E, Potapkin B V 2011 J. Chem. Phys. 134 104505

    [25]

    Pálinkás A, Süle P, Szendr M, Molnár G, Hwang C, Biró L P, Osváth Z 2016 Carbon 107 792

    [26]

    Woods C, Britnell L, Eckmann A, Ma R, Lu J, Guo H, Lin X, Yu G, Cao Y, Gorbachev R 2014 Nat. Phys. 10 451

    [27]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [28]

    Lebedeva I V, Knizhnik A A, Popov A M, Ershova O V, Lozovik Y E, Potapkin B V 2010 Phys. Rev. B 82 155460

    [29]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [30]

    Zhang H, Guo Z, Gao H, Chang T 2015 Carbon 94 60

    [31]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412

    [32]

    Lee H, Lee N, Seo Y, Eom J, Lee S 2009 Nanotechnology 20 325701

    [33]

    Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102

    [34]

    Xu L, Ma T B, Hu Y Z, Wang H 2011 Nanotechnology 22 285708

    [35]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [36]

    Li S, Li Q, Carpick R W, Gumbsch P, Liu X Z, Ding X, Sun J, Li J 2016 Nature 539 541

    [37]

    Guo Z, Chang T, Guo X, Gao H 2011 Phys. Rev. Lett. 107 105502

    [38]

    Ma F, Zheng H, Sun Y, Yang D, Xu K, Chu P K 2012 Appl. Phys. Lett. 101 111904

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W 2016 Nanoscale 8 483

    [41]

    Barreiro A, Rurali R, Hernández E R, Moser J, Pichler T, Forro L, Bachtold A 2008 Science 320 775

    [42]

    Zhao J, Huang J Q, Wei F, Zhu J 2010 Nano Lett. 10 4309

    [43]

    Cao Q, Han S J, Tulevski G S, Zhu Y, Lu D D, Haensch W 2013 Nat. Nanotechnol. 8 180

    [44]

    Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J 2000 Phys. Rev. Lett. 84 1172

    [45]

    Liu Y, Grey F, Zheng Q 2014 Sci. Rep. 4 4875

    [46]

    Berman D, Deshmukh S A, Sankaranarayanan S K, Erdemir A, Sumant A V 2015 Science 348 1118

    [47]

    Seiler S, Halbig C E, Grote F, Rietsch P, Börrnert F, Kaiser U, Meyer B, Eigler S 2018 Nat. Commun. 9 836

    [48]

    Ye Z, Tang C, Dong Y, Martini A 2012 J. Appl. Phys. 112 116102

    [49]

    Li Q, Lee C, Carpick R W, Hone J 2010 Phys. Status Solidi B 247 2909

  • [1]

    Krim J 1996 Sci. Am. 275 74

    [2]

    Ren S L, Yang S R, Zhao Y P 2003 Langmuir 19 2763

    [3]

    Ren S L, Yang S R, Wang J Q, Liu W M, Zhao Y P 2004 Chem. Mater. 16 428

    [4]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [5]

    Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C, Geng D, Yu Z, Zhang S, Wang W 2017 Nat. Commun. 8 14029

    [6]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [7]

    Geim A K 2009 Science 324 1530

    [8]

    de Wijn A S, Fusco C, Fasolino A 2010 Phys. Rev. E 81 046105

    [9]

    Xu Z, Li X, Yakobson B I, Ding F 2013 Nanoscale 5 6736

    [10]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652

    [11]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [12]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [13]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Urbakh M, Cheng Y, Zheng Q 2013 Phys. Rev. Lett. 110 255504

    [14]

    Berman D, Erdemir A, Sumant A V 2014 Mater. Today 17 31

    [15]

    Koren E, Lörtscher E, Rawlings C, Knoll A W, Duerig U 2015 Science 348 679

    [16]

    Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q 2012 Phys. Rev. Lett. 108 205503

    [17]

    Bailey S, Amanatidis I, Lambert C 2008 Phys. Rev. Lett. 100 256802

    [18]

    Guo Z, Chang T, Guo X, Gao H 2012 J. Mech. Phys. Solids 60 1676

    [19]

    Somada H, Hirahara K, Akita S, Nakayama Y 2008 Nano Lett. 9 62

    [20]

    Shiomi J, Maruyama S 2009 Nanotechnology 20 055708

    [21]

    Rurali R, Hernandez E 2010 Chem. Phys. Lett. 497 62

    [22]

    Chang T, Zhang H, Guo Z, Guo X, Gao H 2015 Phys. Rev. Lett. 114 015504

    [23]

    Filippov A E, Dienwiebel M, Frenken J W, Klafter J, Urbakh M 2008 Phys. Rev. Lett. 100 046102

    [24]

    Lebedeva I V, Knizhnik A A, Popov A M, Ershova O V, Lozovik Y E, Potapkin B V 2011 J. Chem. Phys. 134 104505

    [25]

    Pálinkás A, Süle P, Szendr M, Molnár G, Hwang C, Biró L P, Osváth Z 2016 Carbon 107 792

    [26]

    Woods C, Britnell L, Eckmann A, Ma R, Lu J, Guo H, Lin X, Yu G, Cao Y, Gorbachev R 2014 Nat. Phys. 10 451

    [27]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [28]

    Lebedeva I V, Knizhnik A A, Popov A M, Ershova O V, Lozovik Y E, Potapkin B V 2010 Phys. Rev. B 82 155460

    [29]

    Plimpton S 1995 J. Comput. Phys. 7 1

    [30]

    Zhang H, Guo Z, Gao H, Chang T 2015 Carbon 94 60

    [31]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412

    [32]

    Lee H, Lee N, Seo Y, Eom J, Lee S 2009 Nanotechnology 20 325701

    [33]

    Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102

    [34]

    Xu L, Ma T B, Hu Y Z, Wang H 2011 Nanotechnology 22 285708

    [35]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [36]

    Li S, Li Q, Carpick R W, Gumbsch P, Liu X Z, Ding X, Sun J, Li J 2016 Nature 539 541

    [37]

    Guo Z, Chang T, Guo X, Gao H 2011 Phys. Rev. Lett. 107 105502

    [38]

    Ma F, Zheng H, Sun Y, Yang D, Xu K, Chu P K 2012 Appl. Phys. Lett. 101 111904

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W 2016 Nanoscale 8 483

    [41]

    Barreiro A, Rurali R, Hernández E R, Moser J, Pichler T, Forro L, Bachtold A 2008 Science 320 775

    [42]

    Zhao J, Huang J Q, Wei F, Zhu J 2010 Nano Lett. 10 4309

    [43]

    Cao Q, Han S J, Tulevski G S, Zhu Y, Lu D D, Haensch W 2013 Nat. Nanotechnol. 8 180

    [44]

    Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J 2000 Phys. Rev. Lett. 84 1172

    [45]

    Liu Y, Grey F, Zheng Q 2014 Sci. Rep. 4 4875

    [46]

    Berman D, Deshmukh S A, Sankaranarayanan S K, Erdemir A, Sumant A V 2015 Science 348 1118

    [47]

    Seiler S, Halbig C E, Grote F, Rietsch P, Börrnert F, Kaiser U, Meyer B, Eigler S 2018 Nat. Commun. 9 836

    [48]

    Ye Z, Tang C, Dong Y, Martini A 2012 J. Appl. Phys. 112 116102

    [49]

    Li Q, Lee C, Carpick R W, Hone J 2010 Phys. Status Solidi B 247 2909

  • [1] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [5] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [6] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [8] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [9] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [10] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [13] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [14] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [15] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [16] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [17] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6564
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 修回日期:  2018-11-22
  • 刊出日期:  2019-01-05

/

返回文章
返回