搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从常温常压到超临界乙醇的分子动力学模拟

李勇 刘锦超 芦鹏飞 杨向东

引用本文:
Citation:

从常温常压到超临界乙醇的分子动力学模拟

李勇, 刘锦超, 芦鹏飞, 杨向东

Molecular dynamic simulation of ethanol from ambient temperature and pressure to supercritical conditions

Yang Xiang-Dong, Lu Peng-Fei, Li Yong, Liu Jin-Chao
PDF
导出引用
  • 采用分子动力学方法系统地研究了从常温常压到超临界状态乙醇的热力学性质、结构性质和动力学性质.模拟发现随着温度的升高,体系焓值增大,乙醇分子间的氢键作用减弱,自扩散系数增大;随着压强的增大,乙醇分子间的氢键作用增强,自扩散系数减小;乙醇自扩散系数在液相区随温度变化不明显,在气相区随压强增大很快减小,超临界区乙醇的自扩散系数比液相区大十几倍.温度和压强对乙醇自扩散系数的影响可通过密度来体现.与常温常压相比,超临界条件下的乙醇体系因密度涨落存在分子聚集现象,且在低密度区域更显著;乙醇分子间的氢键作用明显减弱,结
    The thermodynamic properties, structure, and dynamic properties of ethanol from ambient conditions to supercritical states were investigated by molecular dynamics simulation (MD). With the increase of temperature, the enthalpy and self-diffusion coefficients increase, while the hydrogen bonding interaction between ethanol molecules weakens. With the increase of pressure, the self-diffusion coefficients decrease, while the hydrogen bonding interaction increases. The self-diffusion coefficient of ethanol in supercritical region is 10 times greater than that in the liquid region. It changes slightly with temperature in the liquid region, while decreases rapidly with pressure in the gas region. The influence of density on self-diffusion coefficient could be manifested by the influence of temperature and pressure. Under supercritical conditions, the ethanol system shows aggregation phenomenon which is even more evident in the low-density region due to density fluctuations. The hydrogen bond of ethanol molecules significantly weakens, the structure becomes loose and the molecular polarity is greatly reduced in supercritical conditions compared with that in ambient conditions. Our results are in good agreement with the experimental data.
    • 基金项目: 国家科技支撑计划(批准号: 2007ABAD50B00)资助的课题.
    [1]

    Ecker C A, Knutson B L, Debendetti P G 1996 Nature 383 313

    [2]

    Yangguchi T, Matubaysi N, Nakahara M 2004 J. Phys. Chem. A 108 1319

    [3]

    Lu Y G, Peng J X 2008 Acta Phys. Sin. 57 1030(in Chinese) [卢义刚、彭健新 2008 物理学报 57 1030]

    [4]

    Fu D, Wang X M, Liu J M, Liu S J 2009 Acta Phys. Sin. 58 3022(in Chinese)[付 东、王学敏、刘建岷、刘绍军 2009 物理学报 58 3022]

    [5]

    Hoffmann M M, Conradi M S 1998 J. Phys. Chem. B 102 263

    [6]

    Tsukhara T, Harada M, Tomiyasu H, Ikeda Y 2008 J. Phys. Chem. A 112 9657

    [7]

    Lalanne P, Andanson J M, Soeten J C, Tassaing T, Danten Y, Besnard M 2004 J. Chem. Phys. A 108 3902

    [8]

    Huang J, Huang J, Huang K, Zhou Q, Chen L, Wu Y Q, Zhu Z B 2006 Polym. Degrad. Stab. 91 2307

    [9]

    Gui M M, Lee K T, Bhatia S 2009 J. Supercrit. Fluids 49 286

    [10]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese) [颜克凤、李小森、陈朝阳、李 刚、 李志宝 2007 物理学报 56 6727] 〖11] Meng L J, Li R W, Sun J D, Liu S J 2009 Acta Phys. Sin. 58 2637(in Chinese)[孟丽娟、李融武、孙俊东、刘绍军 2009 物理学报 58 2637]

    [11]

    Ungerer P, Nieto-Draghi C, Rousseau R, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [12]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 物理学报 58 4817]

    [13]

    Ishii R, Okazaki S, Okada I, Furusaka M, Watanabe N, Misawa M, Fukunaga T 1996 J. Chem. Phys. 105 7011

    [14]

    Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017(in Chinese)[周 健、陆小华、王延儒、时 均 1999 物理化学学报 15 1017]

    [15]

    Chalaris M, Samios J 1999 J. Phys. Chem. B 103 1161

    [16]

    Basi S, Yonker C R 1998 J. Phys. Chem. A 102 8641

    [17]

    Padró J A, Saiz L, Guardià E 1997 J. Mol. Struct. 416 243

    [18]

    Benmore C J 2000 J. Chem. Phys. 112 5877

    [19]

    Chalaris M, Samios J 2004 Purem. Appl. Chem. 76 203

    [20]

    Zhang Y, Yang J, Yu Y X, Li Y G 2005 J. Supercrit. Fluids 36 145

    [21]

    Noskov S Y, Lamoureux G, Roux B 2005 J. Phys. Chem. B 109 6705

    [22]

    Nose S A 1984 Mol. Phys. 52 255

    [23]

    Sauermann P, Holzpfel K, Oprzynski J, Kohler F, Poot W, Loos T W 1995 Fluid. Phase. Equilib. 112 249

    [24]

    Dillon H E, Penoncello S G 2004 Int. J. Thermophys. 25 321

    [25]

    Pesche I B, Debendetti P G 1991 J. Phys. Chem. 95 386

    [26]

    Schnabel T, Srivastava A, Vrabec J, Hasse H 2007 J. Phys. Chem. B 111 9871

    [27]

    Shukla C L, Hallett J P, Popov A V, Hernandez R, Liotta C L, Ecker C A 2006 J. Phys. Chem. B 110 24101

    [28]

    Karger N, Vardag T, Ludenmann H T 1990 J. Chem. Phys. 93 3437

  • [1]

    Ecker C A, Knutson B L, Debendetti P G 1996 Nature 383 313

    [2]

    Yangguchi T, Matubaysi N, Nakahara M 2004 J. Phys. Chem. A 108 1319

    [3]

    Lu Y G, Peng J X 2008 Acta Phys. Sin. 57 1030(in Chinese) [卢义刚、彭健新 2008 物理学报 57 1030]

    [4]

    Fu D, Wang X M, Liu J M, Liu S J 2009 Acta Phys. Sin. 58 3022(in Chinese)[付 东、王学敏、刘建岷、刘绍军 2009 物理学报 58 3022]

    [5]

    Hoffmann M M, Conradi M S 1998 J. Phys. Chem. B 102 263

    [6]

    Tsukhara T, Harada M, Tomiyasu H, Ikeda Y 2008 J. Phys. Chem. A 112 9657

    [7]

    Lalanne P, Andanson J M, Soeten J C, Tassaing T, Danten Y, Besnard M 2004 J. Chem. Phys. A 108 3902

    [8]

    Huang J, Huang J, Huang K, Zhou Q, Chen L, Wu Y Q, Zhu Z B 2006 Polym. Degrad. Stab. 91 2307

    [9]

    Gui M M, Lee K T, Bhatia S 2009 J. Supercrit. Fluids 49 286

    [10]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese) [颜克凤、李小森、陈朝阳、李 刚、 李志宝 2007 物理学报 56 6727] 〖11] Meng L J, Li R W, Sun J D, Liu S J 2009 Acta Phys. Sin. 58 2637(in Chinese)[孟丽娟、李融武、孙俊东、刘绍军 2009 物理学报 58 2637]

    [11]

    Ungerer P, Nieto-Draghi C, Rousseau R, Ahunbay G, Lachet V 2007 J. Mol. Liq. 134 71

    [12]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 物理学报 58 4817]

    [13]

    Ishii R, Okazaki S, Okada I, Furusaka M, Watanabe N, Misawa M, Fukunaga T 1996 J. Chem. Phys. 105 7011

    [14]

    Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017(in Chinese)[周 健、陆小华、王延儒、时 均 1999 物理化学学报 15 1017]

    [15]

    Chalaris M, Samios J 1999 J. Phys. Chem. B 103 1161

    [16]

    Basi S, Yonker C R 1998 J. Phys. Chem. A 102 8641

    [17]

    Padró J A, Saiz L, Guardià E 1997 J. Mol. Struct. 416 243

    [18]

    Benmore C J 2000 J. Chem. Phys. 112 5877

    [19]

    Chalaris M, Samios J 2004 Purem. Appl. Chem. 76 203

    [20]

    Zhang Y, Yang J, Yu Y X, Li Y G 2005 J. Supercrit. Fluids 36 145

    [21]

    Noskov S Y, Lamoureux G, Roux B 2005 J. Phys. Chem. B 109 6705

    [22]

    Nose S A 1984 Mol. Phys. 52 255

    [23]

    Sauermann P, Holzpfel K, Oprzynski J, Kohler F, Poot W, Loos T W 1995 Fluid. Phase. Equilib. 112 249

    [24]

    Dillon H E, Penoncello S G 2004 Int. J. Thermophys. 25 321

    [25]

    Pesche I B, Debendetti P G 1991 J. Phys. Chem. 95 386

    [26]

    Schnabel T, Srivastava A, Vrabec J, Hasse H 2007 J. Phys. Chem. B 111 9871

    [27]

    Shukla C L, Hallett J P, Popov A V, Hernandez R, Liotta C L, Ecker C A 2006 J. Phys. Chem. B 110 24101

    [28]

    Karger N, Vardag T, Ludenmann H T 1990 J. Chem. Phys. 93 3437

  • [1] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [5] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [6] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [7] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [8] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟. 物理学报, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [9] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [10] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [11] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [12] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [13] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [14] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [15] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [16] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究. 物理学报, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
计量
  • 文章访问数:  10155
  • PDF下载量:  1007
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-06
  • 修回日期:  2009-11-10
  • 刊出日期:  2010-07-15

/

返回文章
返回