搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间反演对称性破缺系统中的拓扑零能模

张卫锋 李春艳 陈险峰 黄长明 叶芳伟

引用本文:
Citation:

时间反演对称性破缺系统中的拓扑零能模

张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟

Topological zero-energy modes in time-reversal-symmetry-broken systems

Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei
PDF
导出引用
  • Su-Schreiffer-Heeger模型预测了在一维周期晶格的边缘处可能出现零维的拓扑零能模,其能量本征值总是出现在能隙的正中间.本文以半导体微腔阵列中光子和激子在强耦合情况下形成的准粒子为例,通过准粒子的自旋轨道耦合与Zeeman效应,研究了时间反演对称性破缺对拓扑零能模的影响.发现拓扑零能模的能量本征值可以随着自旋轨道耦合强度的变化在整个带隙内移动,自旋相反的模式移动方向相反;在二维微腔阵列中发现了沿着晶格边缘移动的拓扑零能模,提出了一维零能模的概念.由于时间反演对称性的破缺,这种一维拓扑零能模解除了在相反传输方向上的能级的简并,从而在传输过程中出现极强的绕过障碍物的能力.
    The well-known Su-Schrieffer-Heeger (SSH) model predicts that a chain of sites with alternating coupling constant exhibits two topological distinct phases, and at the truncated edge of the topological nontrivial phase there exists topologically protected edge modes. Such modes are named zero-energy modes as their eigenvalues are located exactly at the midgaps of the corresponding bandstructures. The previous publications have reported a variety of photonic realizations of the SSH model, however, all of these studies have been restricted in the systems of time-reversal-symmetry (TRS), and thus the important question how the breaking of TRS affects the topological edge modes has not been explored. In this work, to the best of our knowledge, we study for the first time the topological zero-energy modes in the systems where the TRS is broken. The system used here is semiconductor microcavities supporting exciton-polariton quasi-particle, in which the interplay between the spin-orbit coupling stemming from the TE-TM energy splitting and the Zeeman effect causes the TRS to break. We first study the topological edge modes occurring at the edge of one-dimensional microcavity array that has alternative coupling strengths between adjacent microcavity, and, by rigorously solving the Schrdinger-like equations (see Eq.(1) or Eq.(2) in the main text), we find that the eigen-energies of topological zero-energy modes are no longer pinned at the midgap position:rather, with the increasing of the spin-orbit coupling, they gradually shift from the original midgap position, with the spin-down edge modes moving toward the lower band while the spin-up edge modes moving towards the upper band. Interestingly enough, the mode profiles of these edge modes remain almost unchanged even they are approaching the bulk transmission bands, which is in sharp contrast to the conventional defect modes that have an origin of bifurcation from the Bloch mode of the upper or lower bands. We also study the edge modes in the two-dimensional microcavity square array, and find that the topological zero modes acquire mobility along the truncated edge due to the coupling from the adjacent arrays. Importantly, owing to the breaking of the TRS, a pair of counterpropagating edge modes, of which one has a momentum k and the other has -k, is no longer of energy degeneracy; as a result the scattering between the forward-and backward-propagating modes is greatly suppressed. Thus, we propose the concept of the one-dimensional topological zero-energy modes that are propagating along the two-dimensional lattice edge, with extremely weak backscattering even on the collisions of the topological zero-energy modes with structural defects or disorder.
      通信作者: 叶芳伟, fangweiye@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11104181,61475101)和高等学校博士学科点专项科研基金(批准号:20110073120074)资助的课题.
      Corresponding author: Ye Fang-Wei, fangweiye@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104181, 61475101) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110073120074).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [4]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [5]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821

    [6]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [7]

    Longhi S 2013 Opt. Lett. 38 3716

    [8]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photon. Rev. 9 392

    [9]

    Ge L, Wang L, Xiao M, Wen W, Chan C T, Han D 2015 Opt. Express 23 21585

    [10]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901

    [11]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, Kivshar Y S 2015 Nanoscale 7 11904

    [12]

    Schomerus H 2013 Opt. Lett. 38 1912

    [13]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633

    [14]

    Xiao M, Zhang Z Q, Chan C T Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [15]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [16]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817

    [17]

    Teo J C Y, Hughes T L 2013 Phys. Rev. Lett. 111 047006

    [18]

    Benalcazar W A, Teo J C Y, Hughes T L 2014 Phys. Rev. B 89 224503

    [19]

    Noh J, Benalcazar W A, Huang S, Collins M J, Chen K, Hughes T L, Rechtsman M C 2016 arXiv: 1611.02373v1

    [20]

    Nalitov A V, Solnyshkov D D, Malpuech G 2015 Phys. Rev. Lett. 114 116401

    [21]

    Bardyn C E, Karzig T, Refael G, Liew T C 2015 Phys. Rev. B 91 161413

    [22]

    Karzig T, Bardyn C E, Lindner N H, Refael G Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [23]

    Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [24]

    Milićević M, Ozawa T, Andreakou P, Carusotto I, Jacqmin T, Galopin E, Amo A 2015 2D Mater. 2 034012

    [25]

    Sich M, Krizhanovskii D N, Skolnick M S, Gorbach A V, Hartley R, Skryabin D V, Santos P V 2012 Nat. Photon. 6 50

    [26]

    Kartashov Y V, Skryabin D V 2016 Optica 3 1228

    [27]

    Li Y M, Li J, Shi L K, Zhang D, Yang W, Chang K 2015 Phys. Rev. Lett. 115 166804

    [28]

    Flayac H 2012 Ph. D. Dissertation (Clermont-Ferrand: Université Blaise Pascal-Clermont-Ferrand Ⅱ)

    [29]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press) p25

    [30]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [31]

    Li Y M, Zhou X, Zhang Y Y, Zhang D, Chang K 2017 Phys. Rev. B 96 035406

    [32]

    Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Vicencio R A 2014 New J. Phys. 16 063061

    [33]

    Schulz S A, Upham J, O’Faolain L, Boyd R W 2017 Opt. Lett. 42 3243

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [4]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [5]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821

    [6]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [7]

    Longhi S 2013 Opt. Lett. 38 3716

    [8]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photon. Rev. 9 392

    [9]

    Ge L, Wang L, Xiao M, Wen W, Chan C T, Han D 2015 Opt. Express 23 21585

    [10]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901

    [11]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, Kivshar Y S 2015 Nanoscale 7 11904

    [12]

    Schomerus H 2013 Opt. Lett. 38 1912

    [13]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633

    [14]

    Xiao M, Zhang Z Q, Chan C T Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [15]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [16]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817

    [17]

    Teo J C Y, Hughes T L 2013 Phys. Rev. Lett. 111 047006

    [18]

    Benalcazar W A, Teo J C Y, Hughes T L 2014 Phys. Rev. B 89 224503

    [19]

    Noh J, Benalcazar W A, Huang S, Collins M J, Chen K, Hughes T L, Rechtsman M C 2016 arXiv: 1611.02373v1

    [20]

    Nalitov A V, Solnyshkov D D, Malpuech G 2015 Phys. Rev. Lett. 114 116401

    [21]

    Bardyn C E, Karzig T, Refael G, Liew T C 2015 Phys. Rev. B 91 161413

    [22]

    Karzig T, Bardyn C E, Lindner N H, Refael G Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [23]

    Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [24]

    Milićević M, Ozawa T, Andreakou P, Carusotto I, Jacqmin T, Galopin E, Amo A 2015 2D Mater. 2 034012

    [25]

    Sich M, Krizhanovskii D N, Skolnick M S, Gorbach A V, Hartley R, Skryabin D V, Santos P V 2012 Nat. Photon. 6 50

    [26]

    Kartashov Y V, Skryabin D V 2016 Optica 3 1228

    [27]

    Li Y M, Li J, Shi L K, Zhang D, Yang W, Chang K 2015 Phys. Rev. Lett. 115 166804

    [28]

    Flayac H 2012 Ph. D. Dissertation (Clermont-Ferrand: Université Blaise Pascal-Clermont-Ferrand Ⅱ)

    [29]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press) p25

    [30]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [31]

    Li Y M, Zhou X, Zhang Y Y, Zhang D, Chang K 2017 Phys. Rev. B 96 035406

    [32]

    Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Vicencio R A 2014 New J. Phys. 16 063061

    [33]

    Schulz S A, Upham J, O’Faolain L, Boyd R W 2017 Opt. Lett. 42 3243

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [6] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [7] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [10] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [12] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [13] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [15] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [19] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  11037
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-03
  • 修回日期:  2017-09-28
  • 刊出日期:  2017-11-05

/

返回文章
返回