搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXenes等离激元诱导热载流子产生与输运温度依变性研究

见超超 马向超 赵子涵 张建奇

引用本文:
Citation:

MXenes等离激元诱导热载流子产生与输运温度依变性研究

见超超, 马向超, 赵子涵, 张建奇

Temperature-dependent study of plasmon-induced hot carrier generation and transport in Mxenes

Jian Chao-Chao, Ma Xiang-Chao, Zhao Zi-Han, Zhang Jian-Qi
PDF
导出引用
  • MXenes 可以实现大规模合成且具有诸多优异光电特性,被用于构建各种结构和功能独特的热载流子光电探测器件。然而,变温环境条件下 MXenes 并不稳定,一方面环境温度升高会加速材料氧化降解,另一方面温度变化可能影响光电器件的寿命和性能稳定性,目前 MXenes 温度不稳定性受到越来越多关注。鉴于实验研究变温条件下 MXenes 热载流子性质的局限,本文基于多体微扰理论和量子力学理论,研究环境温度对电子态分布和散射效应的影响。从表面等离激元非辐射衰减角度出发,采用第一性原理计算量化热载流子的产生效率、能量分布和输运,系统研究了 MXenes 表面等离激元诱导热载流子的环境温度依变特性。结果表明, MXenes 中带间跃迁和声子协助电子跃迁共同高效率产生了高能热空穴主导的热载流子,且表现出与硼烯媲美的长寿命和输运距离。环境温度升高显著提高了红外波段的热载流子产生效率,同时可见光波段的热空穴表现出优异环境温度稳定性。此外,环境温度升高降低了热载流子的寿命和输运距离,主要源于增强的电子与光学声子散射效应。
    Different from conventional optoelectronic devices, plasmon-driven optoelectronic devices achieve efficient energy conversion and regulate the energy distribution of hot carriers through high-energy, non-equilibrium "hot" electron-hole pairs (hot carriers) generated by surface plasmon non-radiative decay, thereby presenting novel opportunities for the advancement of hot carrier optoelectronic devices. As the basis for the practical application of plasmon optoelectronic devices, the quest for exceptional performance plasmon metal materials has always been an important topic in the field of hot carrier optoelectronic devices. Currently, MXenes can be synthesized on a large scale and has excellent photoelectric properties, so it is used to build a variety of hot carrier photodetectors with unique structures and functions. Unlike the fixed surface ends of two-dimensional materials such as graphene, MoS2 and borophene, MXenes has an abundance of surface functional groups. However, the increase of ambient temperature will accelerate the oxidation modification of surface functional groups, thus affecting the life and performance stability of optoelectronic devices. In view of the inherent limitations of experimental research on dynamic characteristics of hot carriers at continuous temperatures, we study the temperature effects on the electronic states distributions and scattering effects based on the theory of multi-body perturbation and quantum mechanics. Particularly, we introduce temperature effect into interband electron transition and phonon-assisted electron transition process to obtain temperature dependent dielectric function. From the perspective of non-radiative decay of surface plasmon, we quantify the hot carrier generation efficiency, energy distribution and transport characteristics by first principles calculations, so as to achieve a systematic study of the ambient temperature dependence of plasmon-induced hot carriers in MXenes. The results show that the interband transition and the phonon-assisted electron transition in MXenes together efficiently produce high-energy hot hole-dominated carriers with a long lifetime and transport distance, which is comparable to borophene. The increase of ambient temperature significantly improves the hot carrier generation efficiency in the infrared range. Meanwhile, the increase of ambient temperature almost does not affect the physical mechanism of hot carrier generation in the visible light, and the generated hot holes show excellent ambient temperature stability. In addition, the increase of ambient temperature decreases the lifetime and transport distance of hot carriers, mainly due to the enhanced scattering of electrons and optical phonons. The research results will provide theoretical and data support for quantitative evaluation of ambient temperature stability of MXenes plasmon optoelectronic devices in practical environment.
  • [1]

    Zhang J C, Wang Y W, Li D, Sun Y H, Jiang L 2022 ACS Materials Lett. 4 343-355.

    [2]

    Fang Y C, Wu Q M, Li H H, Zhang B, Yan R, Chen J L, Sun M T 2018 Appl. Phys. Lett. 112 163101.

    [3]

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301 (in chinese) [周利,王取泉

    [4]

    Lian C, Hu S Q, Zhang J, Cheng C, Yuan Z, Gao S W, Meng S 2020 Phys. Rev. Lett. 125 116802.

    [5]

    Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, Javier García de Abajo F, Dai Q 2022 Nat. Commun. 13 1465.

    [6]

    Gan X R, Lei D Y 2022 Coord. Chem. Rev. 469 214665.

    [7]

    Guo X D, Li N, Wu C C, Dai X K, Qi R S, Qiao T Y, Su T Y, Lei D D, Liu N S, Du J L, Wang E G, Yang X X, Gao P, Dai Q 2011 Adv. Mater. 34 2201120.

    [8]

    Jeon J, Choi H, Choi S, Park J H, Lee B H, Hwang E, Lee S 2019 Adv. Funct. Mater. 29 1905384.

    [9]

    Ke Y X, Cen Y Q, Qi D Y, Zhang W J, Zhang Q 2023 Chinese Journal of Lasers 50 0113008 (in chinese) [柯宇轩, 岑颖乾, 綦殿禹, 张文静, 张青 中国激光 2023, 50 0113008].

    [10]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96-111.

    [11]

    Huang S C, Wang X, Qing-Qing Zhao Q Q, Zhu J F, Li C W, He Y H, Hu S, Sartin Matthew M, Yan S, Bin Ren B 2020 Nat. Commun. 11 4211.

    [12]

    Zhu Y S, Xu H X, Yu P, Wang Z M 2021 Appl. Phys. Rev. 8, 021305.

    [13]

    Zhang Q, Li J B, Wen J, Li W, Chen X, Zhang Y F, Sun J Y, Yan X, Hu M G, Wu G R, Yuan K J, Guo H G, Yang X M 2022 Nat. Commun. 13 7900.

    [14]

    Adam S., Giulia T, Harry A. A, William A. G. III, Prineha N, Ravishankar S 2019 Phys. Rev. Materials 3, 075201.

    [15]

    Liu T T, Zhang C, Li X F 2022 Adv. Optical Mater. 10 2201153.

    [16]

    Han Z R, Changkyun L, Song J W, Wang H Y, Peter B, Ruan X L 2023 Phy. Rev. B 107, L201202.

    [17]

    Reddy H, Guler U, Kudyshev Z, Kildishev A V, Shalaev V M, Boltasseva A 2017 ACS Photonics 4 1413-1420.

    [18]

    Brown A M, Sundararaman R, Schwartzberg A M, Goddard W A, Atwater H A 2017 Phys. Rev. Lett. 118 087401.

    [19]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957-966.

    [20]

    Zhou J J, Hellman O, Bernardi M 2018 Phys. Rev. Lett. 121 226603.

    [21]

    Wang S J, Su D, Zhang T 2019 Acta Physica Sinica, 68, 144401 (in chinese) [王善江, 苏丹, 张彤 2019 物理学报 68, 144401].

    [22]

    Jermyn A, Tagliabue G, Atwater H A, Goddard W A 2019 Phys. Rev. Mater. 3 075201.

    [23]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 SoftwareX 6 278.

    [24]

    Sundararaman R, Arias T A2013 Phys. Rev. B 87 165122.

    [25]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109.

    [26]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108.

    [27]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763.

    [28]

    Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C 2004 Phys. Rev. B 70 235125.

    [29]

    Zhang C X, Ma X C, Zhang J Q 2022 Acta Phys. Sin. 71 227801 (in chinese) [张彩霞, 马向超, 张建奇 2022 物理学报71 227801].

    [30]

    Garcia C A C, Coulter J, Narang P 2020 Phys. Rev. Research 2 013073.

    [31]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 Phys. Rev. B 94 075120.

    [32]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185-15193.

    [33]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 PNAS 112 5291-5296.

    [34]

    Xu J X, Peng T, Qin X, Zhang Q, Liu T Y, Dai W B, Chen B, Yu H Z, Shi S W 2021 J. Mater. Chem. A 9 14147-14171.

    [35]

    Anubhav J, Shyue P O, Geoffroy H, Chen W, William D R, Stephen D, Shreyas C, Dan G, David S, Gerbrand C, Kristin A. P 2013 APL Mater. 1 011002. http://www.materialsproject.org

    [36]

    Razium A S, Zhang P, Fan B M, Wei Y, Xu B 2023 Nano-micro Lett. 15 108.

    [37]

    Zhang T Z, Chang L B, Zhang X F, Wan H J, Liu N, Zhou L J, Xiao X 2022 Nat. Commun. 13 6731.

    [38]

    Bai Y L, Zhou K, Srikanth N, Pang J H L, He X D, Wang R G 2016 RSC Adv. 6 35731.

    [39]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljačić, M, Narang P 2020 Phys. Rev. Mater. 4 074011.

    [40]

    Harsha R, Wang K, Zhaxylyk K, Zhu L X, Yan S, Andrea V, Simon J. H, Vikram G, Alexandra B, Pramod R, Vladimir M. S, Edgar M 2020 Science 369, 423-426.

    [41]

    Yang Y N, Shi L J, Cao Z R, Wang R R, Jing Sun J 2019 Adv. Funct. Mater. 29 1807882.

    [42]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531-541.

    [43]

    物理学报 68 147301].

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, doi: 10.7498/aps.71.20221166
    [2] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221002
    [3] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, doi: 10.7498/aps.69.20200424
    [4] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, doi: 10.7498/aps.68.20190809
    [5] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, doi: 10.7498/aps.66.234206
    [6] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, doi: 10.7498/aps.65.096104
    [7] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, doi: 10.7498/aps.64.234208
    [8] 刘鹏, 廖雷, 褚应波, 王一礴, 胡雄伟, 彭景刚, 李进延, 戴能利. 掺Bi石英光纤的射线辐照和温度影响特性. 物理学报, doi: 10.7498/aps.64.224220
    [9] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, doi: 10.7498/aps.63.197103
    [10] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响. 物理学报, doi: 10.7498/aps.62.034401
    [11] 朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋. 应用于精密振荡器的石英晶体温度特性研究. 物理学报, doi: 10.7498/aps.62.014205
    [12] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, doi: 10.7498/aps.61.108501
    [13] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质. 物理学报, doi: 10.7498/aps.60.113101
    [14] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7285
    [15] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, doi: 10.7498/aps.59.8554
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, doi: 10.7498/aps.58.536
    [17] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究. 物理学报, doi: 10.7498/aps.57.2468
    [18] 张 勇, 唐超群, 戴 君. Rb2TeW3O12电子结构及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.54.868
    [19] 朱明刚, 潘伟, 李卫. Dy与Co对HDDR粘结磁体的温度稳定性与磁性能的影响. 物理学报, doi: 10.7498/aps.51.1608
    [20] 彭英才, 徐刚毅, 何宇亮, 刘 明, 李月霞. (n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究. 物理学报, doi: 10.7498/aps.49.2466
计量
  • 文章访问数:  123
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-10

/

返回文章
返回