搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXenes等离激元诱导热载流子产生与输运温度依变性

见超超 马向超 赵子涵 张建奇

引用本文:
Citation:

MXenes等离激元诱导热载流子产生与输运温度依变性

见超超, 马向超, 赵子涵, 张建奇

Temperature dependence of MXenes plasmons induced hot carrier generation and transport

Jian Chao-Chao, Ma Xiang-Chao, Zhao Zi-Han, Zhang Jian-Qi
PDF
HTML
导出引用
  • MXenes 可以实现大规模合成且具有诸多优异光电特性, 被用于构建各种结构和功能独特的热载流子光电探测器件. 然而, 变温环境条件下 MXenes 并不稳定, 一方面环境温度升高会加速材料氧化降解, 另一方面温度变化可能影响光电器件的寿命和性能稳定性, 目前 MXenes 温度不稳定性受到越来越多关注. 鉴于实验研究变温条件下 MXenes 热载流子性质的局限, 本文基于多体微扰理论和量子力学理论, 研究环境温度对电子态分布和散射效应的影响. 从表面等离激元非辐射衰减角度出发, 采用第一性原理计算量化热载流子的产生效率、能量分布和输运, 系统研究了 MXenes 表面等离激元诱导热载流子的环境温度依变特性. 结果表明, MXenes 中带间跃迁和声子协助电子跃迁共同高效率产生了高能热空穴主导的热载流子, 且表现出与硼烯媲美的长寿命和输运距离. 环境温度升高显著提高了红外波段的热载流子产生效率, 同时可见光波段的热空穴表现出优异环境温度稳定性. 此外, 环境温度升高降低了热载流子的寿命和输运距离, 主要源于增强的电子与光学声子散射效应.
    Unlike conventional optoelectronic devices, plasmon-driven optoelectronic devices can efficiently realize energy conversion and regulate the energy distribution of hot carriers through high-energy, non-equilibrium “hot” electron-hole pairs (hot carriers) generated by surface plasmon non-radiative decay, thereby presenting new opportunities for realizing hot carrier optoelectronic devices. As the basis for the practical application of plasmon optoelectronic devices, searching for plasmon metal materials with exceptional performance has always been an important topic in the field of hot carrier optoelectronic devices. Currently, MXenes can be synthesized on a large scale and has excellent photoelectric properties, so it can be used to build a variety of hot carrier photodetectors with unique structures and functions. Unlike the fixed surface ends of two-dimensional materials such as graphene, MoS2 and borophene, MXenes has an abundance of surface functional groups. However, the increase of ambient temperature will accelerate the oxidation modification of surface functional groups, thus affecting the life and performance stability of optoelectronic devices. In view of the inherent limitations of experimental research on dynamic characteristics of hot carriers at continuous temperatures, we study the temperature effects on the electronic state distributions and scattering effects by using the theory of multi-body perturbation and quantum mechanics. Particularly, we introduce temperature effect into interband electron transition and phonon-assisted electron transition process to obtain temperature dependent dielectric function. From the perspective of non-radiative decay of surface plasmon, we quantify the hot carrier generation efficiency, energy distribution and transport characteristics by first principles calculations, in order to systematically study the ambient temperature dependence of plasmon-induced hot carriers in MXenes. The results show that the interband transition and the phonon-assisted electron transition in MXenes together efficiently produce high-energy hot hole-dominated carriers with a long lifetime and transport distance, which is comparable to borophene. The increase of ambient temperature significantly improves the hot carrier generation efficiency in the infrared range. Meanwhile, the physical mechanism of hot carrier generation in visible light is almost unaffected by the increase of ambient temperature, and the generated hot holes show excellent ambient temperature stability. In addition, the lifetime and transport distance of hot carriers decrease with ambient temperature increasing, which is mainly due to the enhanced scattering of electrons and optical phonons. The research results will provide theoretical and data support for quantitatively evaluating the ambient temperature stability of MXenes plasmon optoelectronic devices in practical environment.
      通信作者: 马向超, xcma@xidian.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12304047)、中国博士后科学基金(批准号: 2023M742752)和中央高校基本科研业务费(批准号: XJSJ23176)资助的课题.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12304047), the China Postdoctoral Science Foundation (Grant No. 2023M742752), and the Fundamental Research Funds for the Central Universities, China (Grant No. XJSJ23176).
    [1]

    Zhang J C, Wang Y W, Li D, Sun Y H, Jiang L 2022 ACS Mater. Lett. 4 343Google Scholar

    [2]

    Fang Y C, Wu Q M, Li H H, Zhang B, Yan R, Chen J L, Sun M T 2018 Appl. Phys. Lett. 112 163101Google Scholar

    [3]

    周利, 王取泉 2019 物理学报 68 147301]Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [4]

    Lian C, Hu S Q, Zhang J, Cheng C, Yuan Z, Gao S W, Meng S 2020 Phys. Rev. Lett. 125 116802Google Scholar

    [5]

    Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, Javier García de Abajo F, Dai Q 2022 Nat. Commun. 13 1465Google Scholar

    [6]

    Gan X R, Lei D Y 2022 Coord. Chem. Rev. 469 214665Google Scholar

    [7]

    Guo X D, Li N, Wu C C, Dai X K, Qi R S, Qiao T Y, Su T Y, Lei D D, Liu N S, Du J L, Wang E G, Yang X X, Gao P, Dai Q 2011 Adv. Mater. 34 2201120

    [8]

    Jeon J, Choi H, Choi S, Park J H, Lee B H, Hwang E, Lee S 2019 Adv. Funct. Mater. 29 1905384Google Scholar

    [9]

    柯宇轩, 岑颖乾, 綦殿禹, 张文静, 张青 2023 中国激光 50 0113008Google Scholar

    Ke Y X, Cen Y Q, Qi D Y, Zhang W J, Zhang Q 2023 Chin. J. Lasers 50 0113008Google Scholar

    [10]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96Google Scholar

    [11]

    Huang S C, Wang X, Qing-Qing Zhao Q Q, Zhu J F, Li C W, He Y H, Hu S, Sartin Matthew M, Yan S, Bin Ren B 2020 Nat. Commun. 11 4211Google Scholar

    [12]

    Zhu Y S, Xu H X, Yu P, Wang Z M 2021 Appl. Phys. Rev. 8 021305Google Scholar

    [13]

    Zhang Q, Li J B, Wen J, Li W, Chen X, Zhang Y F, Sun J Y, Yan X, Hu M G, Wu G R, Yuan K J, Guo H G, Yang X M 2022 Nat. Commun. 13 7900Google Scholar

    [14]

    Jermyn A S, Giulia T, Harry A A, William A G III, Prineha N, Ravishankar S 2019 Phys. Rev. Mater. 3 075201Google Scholar

    [15]

    Liu T T, Zhang C, Li X F 2022 Adv. Optical Mater. 10 2201153Google Scholar

    [16]

    Han Z R, Changkyun L, Song J W, Wang H Y, Peter B, Ruan X L 2023 Phy. Rev. B 107 L201202Google Scholar

    [17]

    Reddy H, Guler U, Kudyshev Z, Kildishev A V, Shalaev V M, Boltasseva A 2017 ACS Photonics 4 1413Google Scholar

    [18]

    Brown A M, Sundararaman R, Schwartzberg A M, Goddard W A, Atwater H A 2017 Phys. Rev. Lett. 118 087401Google Scholar

    [19]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [20]

    Zhou J J, Hellman O, Bernardi M 2018 Phys. Rev. Lett. 121 226603Google Scholar

    [21]

    王善江, 苏丹, 张彤 2019 物理学报 68 144401Google Scholar

    Wang S J, Su D, Zhang T 2019 Acta Phys. Sin. 68 144401Google Scholar

    [22]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 SoftwareX 6 278Google Scholar

    [23]

    Sundararaman R, Arias T A 2013 Phys. Rev. B 87 165122Google Scholar

    [24]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [25]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [26]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [27]

    Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C 2004 Phys. Rev. B 70 235125Google Scholar

    [28]

    张彩霞, 马向超, 张建奇 2022 物理学报 71 227801Google Scholar

    Zhang C X, Ma X C, Zhang J Q 2022 Acta Phys. Sin. 71 227801Google Scholar

    [29]

    Garcia C A C, Coulter J, Narang P 2020 Phys. Rev. Res. 2 013073Google Scholar

    [30]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 Phys. Rev. B 94 075120.Google Scholar

    [31]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [32]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 PNAS 112 5291Google Scholar

    [33]

    Xu J X, Peng T, Qin X, Zhang Q, Liu T Y, Dai W B, Chen B, Yu H Z, Shi S W 2021 J. Mater. Chem. A 9 14147Google Scholar

    [34]

    Anubhav J, Shyue P O, Geoffroy H, Chen W, William D R, Stephen D, Shreyas C, Dan G, David S, Gerbrand C, Kristin A. P 2013 APL Mater. 1 011002Google Scholar

    [35]

    Razium A S, Zhang P, Fan B M, Wei Y, Xu B 2023 Nano-micro Lett. 15 108Google Scholar

    [36]

    Zhang T Z, Chang L B, Zhang X F, Wan H J, Liu N, Zhou L J, Xiao X 2022 Nat. Commun. 13 6731Google Scholar

    [37]

    Bai Y L, Zhou K, Srikanth N, Pang J H L, He X D, Wang R G 2016 RSC Adv. 6 35731Google Scholar

    [38]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljačić M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [39]

    Harsha R, Wang K, Zhaxylyk K, Zhu L X, Yan S, Andrea V, Simon J H, Vikram G, Alexandra B, Pramod R, Vladimir M S, Edgar M 2020 Science 369 423Google Scholar

    [40]

    Yang Y N, Shi L J, Cao Z R, Wang R R, Jing Sun J 2019 Adv. Funct. Mater. 29 1807882Google Scholar

    [41]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

  • 图 1  Ti3C2O2 MXene 晶体结构和第一布里渊区内k点路径

    Fig. 1.  The crystal structure of Ti3C2O2 MXene and the k-point path in the first Brillouin zone.

    图 2  Ti3C2O2 MXene的能带结构和声子谱

    Fig. 2.  Band structure and phonon spectrum of Ti3C2O2 MXene.

    图 3  量化电子跃迁过程的介电函数虚部值 (a)带间电子跃迁; (b)声子协助电子跃迁

    Fig. 3.  Imaginary part of the dielectric function to quantifies the electron transition process: (a) Direct interband electronic transitions; (b) phonon-assisted electron transitions.

    图 4  带间电子跃迁与声子协助电子跃迁的相对贡献, 颜色条表示归一化后的相对贡献, 其中红色代表声子协助电子跃迁, 蓝色代表带间电子跃迁

    Fig. 4.  The relative contribution of interband and phonon-assisted electron transitions, the color bars represent normalized relative contributions, where red represents phonon-assisted electron transitions, and blue represents interband electron transitions

    图 5  热载流子的能量空间分布 (a) 300 K 和(b) 1100 K 时带间电子跃迁产生的热载流子能量分布; (c) 300 K 和(d) 1100 K 时声子协助电子跃迁产生的热载流子能量分布纵轴表示等离激元/光子的能量. 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV; 色度条表示热载流子的分布概率

    Fig. 5.  Energy distribution of hot carriers, generated by direct interband electronic transitions, as a function of plasmon/photon energies at 300 K (a) and 1100 K (b); generated by phonon-assisted electronic transitions, as a function of plasmon/photon energies at 300 K (c) and 1100 K (d). The longitudinal axis indicates the energy of plasmon/photon; the horizontal axis indicates the energy of plasmon/photon-generated carriers, where negative values indicate hot holes and positive values indicate hot electrons. The Fermi level is set to 0 eV. The color bar indicates distribution probabilities of carriers.

    图 6  热载流子的寿命, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴, 费米能级设置为 0 eV

    Fig. 6.  The lifetime of hot carriers, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons, the Fermi level is set to 0 eV.

    图 7  热载流子的平均自由程, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴, 费米能级设置为 0 eV

    Fig. 7.  The mean free path (MFP) of hot carriers, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons, the Fermi level is set to 0 eV.

    图 8  电子-电子散射与电子-声子散射产生的热载流子线宽, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV

    Fig. 8.  The carrier line width generated by electron-electron scattering and electron-phonon scattering. The horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons; the Fermi level is set to 0 eV.

    图 9  电子-声学声子散射与电子-光学声子散射产生的热载流子线宽, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV

    Fig. 9.  The carrier line width generated by electron-acoustic phonon scattering and electron-optical phonon scattering, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons; the Fermi level is set to 0 eV.

    表 1  不同晶体的晶格常数参数比较

    Table 1.  Lattice constant parameters of different crystals.

    晶体晶格常数/Å
    abc
    Ti3C2O2本文3.0393.03922.000
    文献[37]3.0393.039
    Ti3AlC2文献[37]3.0823.082
    下载: 导出CSV
  • [1]

    Zhang J C, Wang Y W, Li D, Sun Y H, Jiang L 2022 ACS Mater. Lett. 4 343Google Scholar

    [2]

    Fang Y C, Wu Q M, Li H H, Zhang B, Yan R, Chen J L, Sun M T 2018 Appl. Phys. Lett. 112 163101Google Scholar

    [3]

    周利, 王取泉 2019 物理学报 68 147301]Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [4]

    Lian C, Hu S Q, Zhang J, Cheng C, Yuan Z, Gao S W, Meng S 2020 Phys. Rev. Lett. 125 116802Google Scholar

    [5]

    Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, Javier García de Abajo F, Dai Q 2022 Nat. Commun. 13 1465Google Scholar

    [6]

    Gan X R, Lei D Y 2022 Coord. Chem. Rev. 469 214665Google Scholar

    [7]

    Guo X D, Li N, Wu C C, Dai X K, Qi R S, Qiao T Y, Su T Y, Lei D D, Liu N S, Du J L, Wang E G, Yang X X, Gao P, Dai Q 2011 Adv. Mater. 34 2201120

    [8]

    Jeon J, Choi H, Choi S, Park J H, Lee B H, Hwang E, Lee S 2019 Adv. Funct. Mater. 29 1905384Google Scholar

    [9]

    柯宇轩, 岑颖乾, 綦殿禹, 张文静, 张青 2023 中国激光 50 0113008Google Scholar

    Ke Y X, Cen Y Q, Qi D Y, Zhang W J, Zhang Q 2023 Chin. J. Lasers 50 0113008Google Scholar

    [10]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96Google Scholar

    [11]

    Huang S C, Wang X, Qing-Qing Zhao Q Q, Zhu J F, Li C W, He Y H, Hu S, Sartin Matthew M, Yan S, Bin Ren B 2020 Nat. Commun. 11 4211Google Scholar

    [12]

    Zhu Y S, Xu H X, Yu P, Wang Z M 2021 Appl. Phys. Rev. 8 021305Google Scholar

    [13]

    Zhang Q, Li J B, Wen J, Li W, Chen X, Zhang Y F, Sun J Y, Yan X, Hu M G, Wu G R, Yuan K J, Guo H G, Yang X M 2022 Nat. Commun. 13 7900Google Scholar

    [14]

    Jermyn A S, Giulia T, Harry A A, William A G III, Prineha N, Ravishankar S 2019 Phys. Rev. Mater. 3 075201Google Scholar

    [15]

    Liu T T, Zhang C, Li X F 2022 Adv. Optical Mater. 10 2201153Google Scholar

    [16]

    Han Z R, Changkyun L, Song J W, Wang H Y, Peter B, Ruan X L 2023 Phy. Rev. B 107 L201202Google Scholar

    [17]

    Reddy H, Guler U, Kudyshev Z, Kildishev A V, Shalaev V M, Boltasseva A 2017 ACS Photonics 4 1413Google Scholar

    [18]

    Brown A M, Sundararaman R, Schwartzberg A M, Goddard W A, Atwater H A 2017 Phys. Rev. Lett. 118 087401Google Scholar

    [19]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [20]

    Zhou J J, Hellman O, Bernardi M 2018 Phys. Rev. Lett. 121 226603Google Scholar

    [21]

    王善江, 苏丹, 张彤 2019 物理学报 68 144401Google Scholar

    Wang S J, Su D, Zhang T 2019 Acta Phys. Sin. 68 144401Google Scholar

    [22]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 SoftwareX 6 278Google Scholar

    [23]

    Sundararaman R, Arias T A 2013 Phys. Rev. B 87 165122Google Scholar

    [24]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [25]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [26]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [27]

    Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C 2004 Phys. Rev. B 70 235125Google Scholar

    [28]

    张彩霞, 马向超, 张建奇 2022 物理学报 71 227801Google Scholar

    Zhang C X, Ma X C, Zhang J Q 2022 Acta Phys. Sin. 71 227801Google Scholar

    [29]

    Garcia C A C, Coulter J, Narang P 2020 Phys. Rev. Res. 2 013073Google Scholar

    [30]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 Phys. Rev. B 94 075120.Google Scholar

    [31]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [32]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 PNAS 112 5291Google Scholar

    [33]

    Xu J X, Peng T, Qin X, Zhang Q, Liu T Y, Dai W B, Chen B, Yu H Z, Shi S W 2021 J. Mater. Chem. A 9 14147Google Scholar

    [34]

    Anubhav J, Shyue P O, Geoffroy H, Chen W, William D R, Stephen D, Shreyas C, Dan G, David S, Gerbrand C, Kristin A. P 2013 APL Mater. 1 011002Google Scholar

    [35]

    Razium A S, Zhang P, Fan B M, Wei Y, Xu B 2023 Nano-micro Lett. 15 108Google Scholar

    [36]

    Zhang T Z, Chang L B, Zhang X F, Wan H J, Liu N, Zhou L J, Xiao X 2022 Nat. Commun. 13 6731Google Scholar

    [37]

    Bai Y L, Zhou K, Srikanth N, Pang J H L, He X D, Wang R G 2016 RSC Adv. 6 35731Google Scholar

    [38]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljačić M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [39]

    Harsha R, Wang K, Zhaxylyk K, Zhu L X, Yan S, Andrea V, Simon J H, Vikram G, Alexandra B, Pramod R, Vladimir M S, Edgar M 2020 Science 369 423Google Scholar

    [40]

    Yang Y N, Shi L J, Cao Z R, Wang R R, Jing Sun J 2019 Adv. Funct. Mater. 29 1807882Google Scholar

    [41]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟. 物理学报, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [3] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [4] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [5] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [6] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [7] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [8] 刘鹏, 廖雷, 褚应波, 王一礴, 胡雄伟, 彭景刚, 李进延, 戴能利. 掺Bi石英光纤的射线辐照和温度影响特性. 物理学报, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [9] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [10] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响. 物理学报, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [11] 朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋. 应用于精密振荡器的石英晶体温度特性研究. 物理学报, 2013, 62(1): 014205. doi: 10.7498/aps.62.014205
    [12] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质. 物理学报, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [15] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [16] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究. 物理学报, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [18] 张 勇, 唐超群, 戴 君. Rb2TeW3O12电子结构及光学性质的第一性原理研究. 物理学报, 2005, 54(2): 868-874. doi: 10.7498/aps.54.868
    [19] 朱明刚, 潘伟, 李卫. Dy与Co对HDDR粘结磁体的温度稳定性与磁性能的影响. 物理学报, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
    [20] 彭英才, 徐刚毅, 何宇亮, 刘 明, 李月霞. (n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究. 物理学报, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
计量
  • 文章访问数:  1105
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-03-27
  • 上网日期:  2024-04-10
  • 刊出日期:  2024-06-05

/

返回文章
返回