搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硅微波高温介电函数深度学习分子动力学模拟

李志强 谭晓瑜 段忻磊 张敬义 杨家跃

引用本文:
Citation:

氮化硅微波高温介电函数深度学习分子动力学模拟

李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃

Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride

Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue
PDF
HTML
导出引用
  • 氮化硅(β-Si3N4)是当下最具应用前景的热透波材料, 其基础物性高温介电函数的精准测量对加快氮化硅基热透波材料的设计, 解决高超声速飞行器“黑障”问题具有重要意义. 本文以第一性原理数据为基本输入, 基于深度神经网络训练得到深度学习势, 然后运用深度学习分子动力学方法计算了氮化硅高温微波介电函数. 与传统经验势相比, 深度学习势的计算结果与实验结果在数量级上保持一致; 同时发现, 深度学习分子动力学在计算速度方面表现优异. 此外, 建立了氮化硅弛豫时间温度依变性的物理模型, 揭示了弛豫时间温度依变性规律. 本研究通过实现大规模高精度的分子动力学模拟计算了氮化硅高温微波介电函数, 为推动氮化硅基材料在高温热透波领域的应用提供了基础数据支撑.
    Silicon nitride (β-Si3N4) is a most promising thermal wave-transparent material. The accurate measurement of its high-temperature dielectric function is essential to solving the “black barrier” problem of hypersonic vehicles and accelerating the design of silicon nitride-based thermal wave-transparent materials. Direct experimental measurement at high temperature is a difficult job and the accuracy of classical molecular dynamics (CMD) simulations suffers the choice of empirical potential. In this work, we build a β-Si3N4 model on a nanoscale, train the deep learning potential (DLP) by using first-principles data, and apply the deep potential molecular dynamics (DPMD) to simulate the polarization relaxation process. The predicted energy and force by DLP are excellently consistent with first-principles calculations, which proves the high accuracy of DLP. The RMSEs for β-Si3N4 are quite low (0.00550 meV/atom for energy and 7.800 meV/Å for force). According to the Cole-Cole formula, the microwave dielectric function in the temperature range of 300–1000 K is calculated by using the deep learning molecular dynamics method. Compared with the empirical potential, the computational results of the DLP are consistent with the experimental results in the sense of order of magnitude. It is also found that the DPMD performs well in terms of computational speed. In addition, a mathematical model of the temperature dependence of the relaxation time is established to reveal the pattern of relaxation time varying with temperature. The high-temperature microwave dielectric function of silicon nitride is calculated by implementing large-scale and high-precision molecular dynamics simulations. It provides fundamental data for promoting the application of silicon nitride in high-temperature thermal transmission.
      通信作者: 杨家跃, jy_yang@sdu.edu.cn
      Corresponding author: Yang Jia-Yue, jy_yang@sdu.edu.cn
    [1]

    Mehra N, Singh R K, Bera S C 2015 Prog. Electromagn. Res. B 63 161Google Scholar

    [2]

    Hartunian R A, Stewart G E, Fergason S D 2007 Aerospace Corp. 5309 1

    [3]

    Jayaraman B, Shyy W 2008 Prog. Aerosp. Sci. 44 139Google Scholar

    [4]

    钟汶帆, 吴孟强 2014 压电与声光 36 1004

    Zhong W F, Wu M Q 2014 Piezoelectr. Acoustoopt. 36 1004

    [5]

    Zhang T, Zhang S R, Wu M Q, Sang W J, Gao Z P, Li Z P 2007 J. Electron. Sci. Technol. 5 4

    [6]

    Neumann M 1983 Mol. Phys. 50 841Google Scholar

    [7]

    Neumann M, Steinhauser O 1983 Chem. Phys. Lett. 102 508Google Scholar

    [8]

    Neumann M, Steinhauser O 1984 Chem. Phys. Lett. 106 563Google Scholar

    [9]

    Afify N D, Sweatman M B 2018 J. Chem. Phys. 148 024508Google Scholar

    [10]

    Cardona J, Fartaria R, Sweatman M B, Lue L 2016 Mol. Simul. 42 370Google Scholar

    [11]

    Blank T B, Brown S D, Calhoun A W, Doren D J 1998 J. Chem. Phys. 103 4129

    [12]

    Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401Google Scholar

    [13]

    Bartók A P, Payne M C, Kondor R, Csányi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [14]

    Behler J 2011 J. Chem. Phys. 134 074106Google Scholar

    [15]

    Novikov I S, Gubaev K, Podryabinkin E V, Shapeev A V 2021 Mach. Learn. Sci. Technol. 2 025002Google Scholar

    [16]

    Zhang L, Han J, Wang H, Car R, Weinan E 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [17]

    Chen W, Li L S 2021 J. Appl. Phys. 129 244104Google Scholar

    [18]

    Kühne T D, Iannuzzi M, Del Ben M, Rybkin V V, Seewald P, Stein F, Laino T, Khaliullin R Z, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian M H, Weber V, Borštnik U, Taillefumier M, Jakobovits A S, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter G K, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy C J, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J 2020 J. Chem. Phys. 152 194103Google Scholar

    [19]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutterc J 2005 Comput. Phys. Commun. 167 103Google Scholar

    [20]

    Del Ben M, Hutter J, VandeVondele J 2012 J. Chem. Theory Comput. 8 4177Google Scholar

    [21]

    Wang H, Zhang L, Han J, E W 2018 Comput. Phys. Commun. 228 178Google Scholar

    [22]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X 2015 arXiv:1605.08695 [cs.DC]

    [23]

    Behler J 2011 Phys. Chem. Chem. Phys. 13 17930Google Scholar

    [24]

    Jia W, Wang H, Chen M, Lu D, Car R, E W, Zhang L 2018 Adv. Neural Inf. Process. Syst. 31 1Google Scholar

    [25]

    Kingma DP, Ba J 2017 arXiv. 1412 6980

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [28]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069Google Scholar

    [29]

    Tersoff J 1989 Phys. Rev. B 39 5566Google Scholar

    [30]

    Tersoff J 1988 Phys. Rev. B 37 6991Google Scholar

    [31]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341Google Scholar

    [32]

    Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A, Prinz F B 2017 Sci. Data 4 160134Google Scholar

    [33]

    Wang M, Zhang Y, Liu X, Wang X 2013 Ceram. Int. 39 2069Google Scholar

    [34]

    Shao S, Luo H, Deng L, He J, Huang S 2018 AIP Adv. 8 075127Google Scholar

    [35]

    Saleem A, Zhang Y J, Gong H Y, Majeed M K, Lin X, Jing J, Sheng M M, Zhao C C 2020 J. Mater. Sci. Mater. Electron. 31 2918Google Scholar

    [36]

    Yang J Y, Xu M, Liu L H 2016 J. Quant. Spectrosc. Radiat. Transf. 184 111Google Scholar

  • 图 1  深度学习势训练流程: 主要包含AIMD计算采样、深度神经网络训练以及深度学习分子动力学模拟三部分

    Fig. 1.  DLP training process: AIMD computational sampling, DNN training, and DPMD simulation.

    图 2  β-Si3N4的晶体结构 (a) 用于第一性原理分子动力学计算的体系(原子个数为140个); (b) 用于深度学习分子动力学模拟的体系(原子个数为2200个), 其中绿色原子代表硅原子, 红色原子代表氮原子

    Fig. 2.  Crystal structure of β-Si3N4: (a) The system for first-principles molecular dynamics calculations (140 atoms); (b) the system for deep potential molecular dynamics simulations (2200 atoms). The green atoms represent silicon atoms and the red atoms for nitrogen atoms.

    图 3  (a) 第一性原理计算体系能量和深度学习势计算体系能量对比关系图; (b)—(d) 第一性原理计算原子受力和深度学习势计算原子受力对比关系图. 其中图中直线代表y=x

    Fig. 3.  (a) Comparison between the energy calculated by first-principles and that by the deep learning potential; (b)–(d) comparison between the forces on the atoms calculated by first-principles and those by the deep learning potential. The straight line in the figure represents y = x.

    图 4  (a)—(c) 300 K温度下DPMD与AIMD计算径向分布函数对比图; (d)—(f) 1000 K温度下DPMD与AIMD模拟径向分布函数对比图

    Fig. 4.  (a)−(c) Comparison of radial distribution function between DPMD and AIMD simulations at 300 K; (d)−(f) comparison of radial distribution function between DPMD and AIMD simulations at 1000 K.

    图 5  运用深度学习分子动力学计算的700 K温度下氮化硅偶极矩自相关函数 (a) 偶极矩自相关函数随时间的变化; (b) 偶极矩自相关极值点对数值随时间的变化

    Fig. 5.  Silicon nitride dipole moment autocorrelation function at 700 K calculated by the deep learning potential: (a) Dipole moment autocorrelation function versus time; (b) dipole moment autocorrelation polar point logarithm versus time.

    图 6  (a) β-Si3N4在不同温度时的频率相关介电函数实部; (b) β-Si3N4在不同温度时的频率相关介电函数虚部. 其中文献[34]仅给出了实部值, 未给出虚部值. 文献[35]给出了8—12 GHz频率范围内的介电函数实验测量值

    Fig. 6.  (a) Real part and (b) imaginary part of frequency-dependent dielectric function of β-Si3N4 at varying temperatures. Note that only the real part is given in Ref. [34]. The values of dielectric function in the frequency range of 8–12 GHz are given in Ref. [35]

    图 7  弛豫时间随温度变化曲线, 其中蓝色直线代表弛豫时间温度依变性模型, 红色散点代表不同温度下弛豫时间变化曲线

    Fig. 7.  Relaxation time variation curves with temperature. The blue straight line corresponds to relaxation time temperature dependence model, and the red scattered points represent relaxation time variation curves at different temperatures.

    图 8  DPMD (Nvidia RTX 3080 GPU计算)与AIMD (48个Intel Xeon Platinum 9242 CPU计算)计算速度结果

    Fig. 8.  Computational speed of DPMD (running with a Nvidia RTX 3080 GPU) and AIMD calculations (running with 48 Intel Xeon Platinum 9242 CPU cores).

    表 1  不同温度条件下的弛豫时间

    Table 1.  Relaxation time under different temperatures by DLP and Tersoff potential.

    温度/K弛豫时间/ps
    DLPTersoff potential
    30029.2752.89
    40026.4833.17
    50016.1436.08
    60014.3927.87
    7007.1416.76
    8006.0420.05
    9004.150.88
    10002.830.27
    下载: 导出CSV
  • [1]

    Mehra N, Singh R K, Bera S C 2015 Prog. Electromagn. Res. B 63 161Google Scholar

    [2]

    Hartunian R A, Stewart G E, Fergason S D 2007 Aerospace Corp. 5309 1

    [3]

    Jayaraman B, Shyy W 2008 Prog. Aerosp. Sci. 44 139Google Scholar

    [4]

    钟汶帆, 吴孟强 2014 压电与声光 36 1004

    Zhong W F, Wu M Q 2014 Piezoelectr. Acoustoopt. 36 1004

    [5]

    Zhang T, Zhang S R, Wu M Q, Sang W J, Gao Z P, Li Z P 2007 J. Electron. Sci. Technol. 5 4

    [6]

    Neumann M 1983 Mol. Phys. 50 841Google Scholar

    [7]

    Neumann M, Steinhauser O 1983 Chem. Phys. Lett. 102 508Google Scholar

    [8]

    Neumann M, Steinhauser O 1984 Chem. Phys. Lett. 106 563Google Scholar

    [9]

    Afify N D, Sweatman M B 2018 J. Chem. Phys. 148 024508Google Scholar

    [10]

    Cardona J, Fartaria R, Sweatman M B, Lue L 2016 Mol. Simul. 42 370Google Scholar

    [11]

    Blank T B, Brown S D, Calhoun A W, Doren D J 1998 J. Chem. Phys. 103 4129

    [12]

    Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401Google Scholar

    [13]

    Bartók A P, Payne M C, Kondor R, Csányi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [14]

    Behler J 2011 J. Chem. Phys. 134 074106Google Scholar

    [15]

    Novikov I S, Gubaev K, Podryabinkin E V, Shapeev A V 2021 Mach. Learn. Sci. Technol. 2 025002Google Scholar

    [16]

    Zhang L, Han J, Wang H, Car R, Weinan E 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [17]

    Chen W, Li L S 2021 J. Appl. Phys. 129 244104Google Scholar

    [18]

    Kühne T D, Iannuzzi M, Del Ben M, Rybkin V V, Seewald P, Stein F, Laino T, Khaliullin R Z, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian M H, Weber V, Borštnik U, Taillefumier M, Jakobovits A S, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter G K, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy C J, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J 2020 J. Chem. Phys. 152 194103Google Scholar

    [19]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutterc J 2005 Comput. Phys. Commun. 167 103Google Scholar

    [20]

    Del Ben M, Hutter J, VandeVondele J 2012 J. Chem. Theory Comput. 8 4177Google Scholar

    [21]

    Wang H, Zhang L, Han J, E W 2018 Comput. Phys. Commun. 228 178Google Scholar

    [22]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X 2015 arXiv:1605.08695 [cs.DC]

    [23]

    Behler J 2011 Phys. Chem. Chem. Phys. 13 17930Google Scholar

    [24]

    Jia W, Wang H, Chen M, Lu D, Car R, E W, Zhang L 2018 Adv. Neural Inf. Process. Syst. 31 1Google Scholar

    [25]

    Kingma DP, Ba J 2017 arXiv. 1412 6980

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [28]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069Google Scholar

    [29]

    Tersoff J 1989 Phys. Rev. B 39 5566Google Scholar

    [30]

    Tersoff J 1988 Phys. Rev. B 37 6991Google Scholar

    [31]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341Google Scholar

    [32]

    Petousis I, Mrdjenovich D, Ballouz E, Liu M, Winston D, Chen W, Graf T, Schladt T D, Persson K A, Prinz F B 2017 Sci. Data 4 160134Google Scholar

    [33]

    Wang M, Zhang Y, Liu X, Wang X 2013 Ceram. Int. 39 2069Google Scholar

    [34]

    Shao S, Luo H, Deng L, He J, Huang S 2018 AIP Adv. 8 075127Google Scholar

    [35]

    Saleem A, Zhang Y J, Gong H Y, Majeed M K, Lin X, Jing J, Sheng M M, Zhao C C 2020 J. Mater. Sci. Mater. Electron. 31 2918Google Scholar

    [36]

    Yang J Y, Xu M, Liu L H 2016 J. Quant. Spectrosc. Radiat. Transf. 184 111Google Scholar

  • [1] 见超超, 马向超, 赵子涵, 张建奇. MXenes等离激元诱导热载流子产生与输运温度依变性. 物理学报, 2024, 73(11): 117801. doi: 10.7498/aps.73.20231924
    [2] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器. 物理学报, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [3] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响. 物理学报, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [5] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [7] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用. 物理学报, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [8] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [9] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [10] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量. 物理学报, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [11] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [12] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [13] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质. 物理学报, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [15] 樊振军, 耿学文, 孔文婕, 金贻荣. D相AlCuCo准晶各向异性热电势的测量. 物理学报, 2009, 58(10): 7119-7123. doi: 10.7498/aps.58.7119
    [16] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [17] 李公平, 张梅玲. 铜团簇(n=55)结构及能量随温度演变的Monte Carlo 模拟研究. 物理学报, 2005, 54(6): 2873-2876. doi: 10.7498/aps.54.2873
    [18] 张 勇, 唐超群, 戴 君. Rb2TeW3O12电子结构及光学性质的第一性原理研究. 物理学报, 2005, 54(2): 868-874. doi: 10.7498/aps.54.868
    [19] 陆卫, 刘普霖, 沈学础, MvonOrtenberg. Ⅳ-Ⅵ族半导体材料磁场下的红外介电函数. 物理学报, 1995, 44(4): 666-672. doi: 10.7498/aps.44.666
    [20] 杨瑞青, 陆晓佳, 蔡建华. 半导体超晶格的介电函数倒数与快速电子能量损失谱. 物理学报, 1989, 38(3): 492-496. doi: 10.7498/aps.38.492
计量
  • 文章访问数:  13297
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-20
  • 上网日期:  2022-12-08
  • 刊出日期:  2022-12-24

/

返回文章
返回