搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导体的Higgs物理

储灏 张昊天 张至立

引用本文:
Citation:

超导体的Higgs物理

储灏, 张昊天, 张至立

Higgs physics in superconductors

Hao Chu, Haotian Zhang, Zhili Zhang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • Nambu-Goldstone理论指出:连续对称的破缺会产生零能的玻色激发。在超导相变中,连续的局域U (1)规范对称发生破缺,理应产生零能的集体模式(即超导相位模式)。1962年,Philip Anderson指出:库珀对(Cooper pairs)之间的库伦相互作用使该零能模跃迁至等离子体频率。因此超流体在库珀对配对能量(2Δ)以内不存在玻色激发,这套机制还导致介导电磁相互作用的光子获得质量。Anderson机制为超导体保持零损耗电流、展现完全抗磁效应提供了微观解释。1964年,为解释介导电弱相互作用的W±,Z玻色子为何具有质量,Peter Higgs,François Englert,Tom Kibble等人分别提出自然界中存在(现称作) Higgs场的假设:该物质场与零质量的W±,Z玻色子耦合,使它们产生质量。这套机制与超导体中光子产生质量的机制相似,被统称为Anderson-Higgs机制。2013年,欧洲大型强子对撞机捕捉到Higgs场的标量激发(即Higgs boson)的实验证据,证实了半个世纪以来关于Higgs场的猜想。与Higgs boson对应的超导振幅模式因此被称作超导Higgs模式。近半个世纪以来,在众多超导材料的谱学研究中,该模式同样难寻踪迹。近年来,超快/非线性谱学技术的发展与运用使谱学实验可以更加有效地捕获Higgs模式的踪迹。本文将介绍超导Higgs模式的历史背景与最新研究进展,讨论Higgs模式可能为高温超导研究带来的崭新视角、机遇与挑战。
    As pointed out by Nambu-Goldstone theorem, continuous symmetry breaking gives rise to massless or gapless bosonic excitations. In superconductors, continuous local U(1) gauge symmetry is broken. The gapless excitation thus created is the collective phase mode of the superconducting order parameter. In 1962, Philip Anderson pointed out that the Coulomb interaction between Cooper pairs lifts this gapless mode to the superconducting plasma frequency. Therefore, in a superconducting fluid there are no bosonic excitations below the binding energy of the Cooper pairs (2Δ). Anderson’s mechanism also implies that the massless photon which mediates electromagnetic interaction becomes massive in a superconductor. This mechanism provides a microscopic theory for the dissipationless charge transport (in conjunction with Landau’s criterion for superfluidity) as well as the Meissner effect inside a superconductor. Jumping into particle physics, in 1964 in order to explain why the gauge bosons for electroweak interaction, namely the W±, Z bosons, are massive, Peter Higgs, François Englert, Tom Kibble and colleagues proposed the existence of a field (presently referred to as the Higgs field) in nature. This matter field couples to the massless W±, Z bosons and generates mass via the Higgs mechanism. Due to their conceptual similarities, these two mechanisms are collectively referred to as the Anderson-Higgs mechanism nowadays. In 2013, the detection of the scalar excitation of the Higgs field, namely the Higgs boson, at the Large Hadron Collider provided the final proof for the Higgs hypothesis almost 50 years after its conception. The amplitude mode of the superconducting order parameter, which corresponds to the Higgs boson through the above analogy, is referred to as the Higgs mode of a superconductor. Its spectroscopic detection has also remained elusive for nearly half a century. In recent years, the development of ultrafast and nonlinear spectroscopic techniques enabled an effective approach for investigating the Higgs mode of superconductors. This article will introduce the historical background of the Higgs mode and review the recent developments in its spectroscopy investigation. We will also discuss the novel perspectives and insights that may be learnt from these studies for future high-temperature superconductivity research.
  • [1]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 106 162

    [2]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [3]

    McMillan W L 1968 Phys. Rev. 167 331

    [4]

    Landau L 1941 Phys. Rev. 60 356

    [5]

    Yarnell J L, Arnold G P, Bendt P J, Kerr E C 1958 Phys. Rev. Lett. 1 9

    [6]

    Shimano R, Tsuji N 2020 Annu. Rev. Condens. Matter Phys. 11 103

    [7]

    Anderson P W 1963 Phys. Rev. 130 439

    [8]

    Basov D N, Woods S I, Katz A S, Singley E J, Dynes R C, Xu M, Hinks D G, Homes C C, Strongin M 1999 Science 283 49

    [9]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [10]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321

    [11]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Lett. 13 585

    [12]

    Volkov A F, Kogan S M 1973 J. Exp. Theor. Phys. 65 2038

    [13]

    Peronaci F, Schiró M, Capone M 2015 Phys. Rev. Lett. 115 257001

    [14]

    Pekker D, Varma C M 2015 Annu. Rev. Condens. Matter Phys. 6 269

    [15]

    Podolsky D, Auerbach A, Arovas D P 2011 Phys. Rev. B 84 174522

    [16]

    Cea T, Castellani C, Seibold G, Benfatto L 2015 Phys. Rev. Lett. 115 157002

    [17]

    Sooryakumar R, Klein M V 1980 Phys. Rev. Lett. 45 660

    [18]

    Sooryakumar R, Klein M V 1981 Phys. Rev. B 23 3213

    [19]

    Littlewood P B, Varma C M 1981 Phys. Rev. Lett. 47 811

    [20]

    Littlewood P B, Varma C M 1982 Phys. Rev. B 26 4883

    [21]

    Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z, Shimano R 2013 Phys. Rev. Lett. 111 057002

    [22]

    Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H, Shimano R 2014 Science 345 1145

    [23]

    Anderson P W 1958 Phys. Rev. 112 1900

    [24]

    Tsuji N, Aoki H 2015 Phys. Rev. B 92 064508

    [25]

    Mansart B, Lorenzana J, Mann A, Odeh A, Scarongella M, Chergui M, Carbone F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4539

    [26]

    Devereaux T P, Hackl R 2007 Rev. Mod. Phys. 79 175

    [27]

    Katsumi K, Tsuji N, Hamada Y I, Matsunaga R, Schneeloch J, Zhong R D, Gu G D, Aoki H, Gallais Y, Shimano R 2018 Phys. Rev. Lett. 120 117001

    [28]

    Chu H, Kovalev S, Wang Z X, Schwarz L, Dong T, Feng L, Haenel R, Kim M-J, Shabestari P, Hoang L P, Honasoge K, Dawson R D, Putzky D, Kim G, Puviani M, Chen M, Awari N, Ponomaryov A N, Ilyakov I, Bluschke M, Boschini F, Zonno M, Zhdanovich S, Na M, Christiani G, Logvenov G, Jones D J, Damascelli A, Minola M, Keimer B, Manske D, Wang N, Deinert J-C, Kaiser S 2023 Nat. Commun. 14 1343

    [29]

    Cea T, Castellani C, Benfatto L 2016 Phys. Rev. B 93 180507

    [30]

    Matsunaga R, Tsuji N, Makise K, Terai H, Aoki H, Shimano R 2017 Phys. Rev. B 96 020505

    [31]

    Tsuji N, Murakami Y, Aoki H 2016 Phys. Rev. B 94 224519

    [32]

    Cea T, Barone P, Castellani C, Benfatto L 2018 Phys. Rev. B 97 094516

    [33]

    Seibold G, Udina M, Castellani C, Benfatto L 2021 Phys. Rev. B 103 014512

    [34]

    Tsuji N, Nomura Y 2020 Phys. Rev. Res. 2 043029

    [35]

    Gabriele F, Udina M, Benfatto L 2021 Nat. Commun. 12 752

    [36]

    Lorenzana J, Seibold G 2024 Phys. Rev. Lett. 132 026501

    [37]

    Kemper A F, Sentef M A, Moritz B, Freericks J K, Devereaux T P 2015 Phys. Rev. B 92 224517

    [38]

    Krull H, Bittner N, Uhrig G S, Manske D, Schnyder A P 2016 Nat. Commun. 7 11921

    [39]

    Moor A, Volkov A F, Efetov K B 2017 Phys. Rev. Lett. 118 047001

    [40]

    Nakamura S, Iida Y, Murotani Y, Matsunaga R, Terai H, Shimano R 2019 Phys. Rev. Lett. 122 257001

    [41]

    Barlas Y, Varma C M 2013 Phys. Rev. B 87 054503

    [42]

    Schwarz L, Fauseweh B, Tsuji N, Cheng N, Bittner N, Krull H, Berciu M, Uhrig G S, Schnyder A P, Kaiser S, Manske D 2020 Nat. Commun. 11 287

    [43]

    Yang F, Wu M W 2018 Phys. Rev. B 98 094507

    [44]

    Yang F, Wu M W 2019 Phys. Rev. B 100 104513

    [45]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 93 094509

    [46]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 94 115126

    [47]

    Sherman D, Pracht U S, Gorshunov B, Poran S, Jesudasan J, Chand M, Raychaudhuri P, Swanson M, Trivedi N, Auerbach A, Scheffler M, Frydman A, Dressel M 2015 Nat. Phys. 11 188

    [48]

    Kovalev S, Dong T, Shi L-Y, Reinhoffer C, Xu T-Q, Wang H-Z, Wang Y, Gan Z-Z, Germanskiy S, Deinert J-C, Ilyakov I, van Loosdrecht P H M, Wu D, Wang N-L, Demsar J, Wang Z 2021 Phys. Rev. B 104 L140505

    [49]

    Wang Z-X, Xue J-R, Shi H-K, Jia X-Q, Lin T, Shi L-Y, Dong T, Wang F, Wang N-L 2022 Phys. Rev. B 105 L100508

    [50]

    Chu H, Kim M-J, Katsumi K, Kovalev S, Dawson R D, Schwarz L, Yoshikawa N, Kim G, Putzky D, Li Z Z, Raffy H, Germanskiy S, Deinert J-C, Awari N, Ilyakov I, Green B, Chen M, Bawatna M, Cristiani G, Logvenov G, Gallais Y, Boris A V, Keimer B, Schnyder A P, Manske D, Gensch M, Wang Z, Shimano R, Kaiser S 2020 Nat. Commun. 11 1793

    [51]

    Cea T, Benfatto L 2014 Phys. Rev. B 90 224515

    [52]

    Schwarz L, Haenel R, Manske D 2021 Phys. Rev. B 104 174508

    [53]

    Feng L, Cao J, Priessnitz T, Dai Y, de Oliveira T, Yuan J, Oka R, Kim M-J, Chen M, Ponomaryov A N, Ilyakov I, Zhang H, Lv Y, Mazzotti V, Kim G, Christiani G, Logvenov G, Wu D, Huang Y, Deinert J-C, Kovalev S, Kaiser S, Dong T, Wang N, Chu H 2023 Phys. Rev. B 108 L100504

    [54]

    Yuan J, Shi L, Yue L, Li B, Wang Z, Xu S, Xu T, Wang Y, Gan Z, Chen F, Lin Z, Wang X, Jin K, Wang X, Luo J, Zhang S, Wu Q, Liu Q, Hu T, Li R, Zhou X, Wu D, Dong T, Wang N 2024 Sci. Adv. 10 eadg9211

    [55]

    Méasson M-A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, Sacuto A 2014 Phys. Rev. B 89 060503

    [56]

    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L, Méasson M-A 2018 Phys. Rev. B 97 094502

    [57]

    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S, Coronado E, Méasson M-A 2019 Phys. Rev. Lett. 122 127001

    [58]

    Glier T E, Tian S, Rerrer M, Westphal L, Lüllau G, Feng L, Dolgner J, Haenel R, Zonno M, Eisaki H, Greven M, Damascelli A, Kaiser S, Manske D, Rübhausen M 2024 arXiv:2310.08162

    [59]

    Puviani M, Baum A, Ono S, Ando Y, Hackl R, Manske D 2021 Phys. Rev. Lett. 127 197001

    [60]

    Mineev V P, Zhitomirsky M E 2005 Phys. Rev. B 72 014432

    [61]

    Harter J W, Zhao Z-Y, Yan J Q, Mandrus D G, Hsieh D 2017 Science 356 295

    [62]

    Chu J-H, Kuo H-H, Analytis J G, Fisher I R 2012 Science 337 710

    [63]

    Vaswani C, Kang J H, Mootz M, Luo L, Yang X, Sundahl C, Cheng D, Huang C, Kim R H J, Liu Z, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2021 Nat. Commun. 12 258

    [64]

    Luo L, Mootz M, Kang J H, Huang C, Eom K, Lee J W, Vaswani C, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2023 Nat. Phys. 19 201

    [65]

    Katsumi K, Fiore J, Udina M, Romero R, Barbalas D, Jesudasan J, Raychaudhuri P, Seibold G, Benfatto L, Armitage N P 2024 Phys. Rev. Lett. 132 256903

    [66]

    Kim M-J, Kovalev S, Udina M, Haenel R, Kim G, Puviani M, Cristiani G, Ilyakov I, de Oliveira T V A G, Ponomaryov A, Deinert J-C, Logvenov G, Keimer B, Manske D, Benfatto L, Kaiser S 2024 Sci. Adv. 10 eadi7598

    [67]

    Du Y, Liu G, Ruan W, Fang Z, Watanabe K, Taniguchi T, Liu R, Li J-X, Xi X 2025 Phys. Rev. Lett. 134 066002

    [68]

    Isoyama K, Yoshikawa N, Katsumi K, Wong J, Shikama N, Sakishita Y, Nabeshima F, Maeda A, Shimano R 2021 Commun. Phys. 4 1

    [69]

    Katsumi K, Nishida M, Kaiser S, Miyasaka S, Tajima S, Shimano R 2023 Phys. Rev. B 107 214506

    [70]

    Collado H P O, Lorenzana J, Usaj G, Balseiro C A 2018 Phys. Rev. B 98 214519

    [71]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2021 Phys. Rev. Res. 3 L042023

    [72]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2023 Phys. Rev. Res. 5 023014

    [73]

    Fan B, Cai Z, García-García A M 2024 Phys. Rev. B 110 134307

  • [1] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, doi: 10.7498/aps.73.20240944
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, doi: 10.7498/aps.71.20220011
    [3] 李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰. 中国超导电子学研究及应用进展. 物理学报, doi: 10.7498/aps.70.20202121
    [4] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [5] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, doi: 10.7498/aps.68.20190305
    [6] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, doi: 10.7498/aps.67.20180627
    [7] 张翔宇, 马英翔, 徐春龙, 丁健, 全红娟, 侯兆阳, 石刚, 秦宁, 高当丽. 单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究. 物理学报, doi: 10.7498/aps.67.20172191
    [8] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, doi: 10.7498/aps.67.20172345
    [9] 王建立, 郭亮, 徐先凡, 倪中华, 陈云飞. 晶格振动的超快光谱调控. 物理学报, doi: 10.7498/aps.66.014203
    [10] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, doi: 10.7498/aps.66.087801
    [11] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究. 物理学报, doi: 10.7498/aps.64.094210
    [12] 刘宁, 张新平, 窦菲. 小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究. 物理学报, doi: 10.7498/aps.61.027201
    [13] 徐悦, 金钻明, 李高芳, 张郑兵, 林贤, 马国宏, 程振祥. 锰酸钇薄膜中Mn3+离子dd跃迁的超快光谱学研究. 物理学报, doi: 10.7498/aps.61.177802
    [14] 吴雪炜, 刘晓峻. 钛酸锶纳米颗粒界面层特性的光谱学研究. 物理学报, doi: 10.7498/aps.57.5500
    [15] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, doi: 10.7498/aps.55.3760
    [16] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, doi: 10.7498/aps.50.1956
    [17] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究. 物理学报, doi: 10.7498/aps.50.453
    [18] 闻海虎, 李宏成, 戚振中, 曹效文. 高温超导薄膜中的涨落超导电性及其维度. 物理学报, doi: 10.7498/aps.39.1811
    [19] 李燕飞. 非晶ZrCo合金中的超导涨落和顺电导. 物理学报, doi: 10.7498/aps.39.151
    [20] 李荫远. 论高阶辐射过程Raman效应及其在光谱学中的应用. 物理学报, doi: 10.7498/aps.20.164
计量
  • 文章访问数:  51
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-19

/

返回文章
返回