搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中高能重离子碰撞与核物质状态方程研究

张亚鹏 孙志宇 雍高产 冯兆庆

引用本文:
Citation:

中高能重离子碰撞与核物质状态方程研究

张亚鹏, 孙志宇, 雍高产, 冯兆庆

Intermediate/high-energy heavy-ion collisions and nuclear matter equation of state

ZHANG Yapeng, SUN Zhiyu, YONG Gaochan, FENG Zhaoqing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 核物质状态方程是核物质体系在不同热力学或者外场条件下对其宏观性质的描述, 它对理解微观强相互作用的理论-量子色动力学(QCD)、原子核性质、重离子碰撞动力学、致密天体内部结构、双中子星合并等具有重要意义. 重离子碰撞(HICs)是在实验室产生极端条件(如高温、高密、强磁场、强涡旋等)核物质的唯一手段. 不同碰撞能量的HICs为定量研究核物质在不同热力学条件下的性质提供了可能. 本文主要介绍当前核物质状态方程的研究现状, 并介绍HICs中对核物质状态方程敏感的基本可观测量、探索核物质状态的典型实验和结果. 展现包含有奇异强子核物质状态方程的研究进展, 并探讨未来可能的研究方向. 介绍国际上在建和正在运行的重离子加速器和实验谱仪的最新进展, 包括我国已经建成的兰州重离子加速器装置(HIRFL)和兰州重离子加速器装置-冷却储存环(HIRFL-CSR)、在建的强流重离子加速器装置(HIAF)和在建的低温高密核物质测量谱仪的研制进展, 并讨论未来基于我国大科学装置开展核物质状态方程实验研究的机遇与挑战.
    The equation of state (EoS) of nuclear matter is a description of the macroscopic properties of nuclear matter under different thermodynamic conditions or external fields, which is critical for understanding theory of the strong interaction—Quantum Chromodynamics (QCD), the nature of nuclei, the dynamics of heavy-ion collisions (HICs), the internal structure of compact stars, the merger of binary neutron stars, and other physical phenomena. Heavy-ion collisions (HICs) are the only method in laboratories to create nuclear matter with extreme conditions such as high temperatures and high densities. HICs at different energy levels offer the possibility to quantitatively study the properties of nuclear matter under diverse thermodynamic conditions. This paper mainly presents the current research status of the EoS of nuclear matter and introduces the fundamental observables in HICs that are sensitive to the EoS, as well as the typical experiments and results used to explore the EoS. The progress in studying the EoS containing strangeness is also described and its possible research directions in the future also discussed. The status and progress of world-wide heavy-ion accelerators and experimental spectrometers in high-baryon density region are introduced, including China’s large-scale scientific facilities, i.e HIRFL-CSR and HIAF, as well as the CEE experiment. Additionally, the opportunities and challenges for experimental research on the EoS of nuclear matter in China are discussed.
  • 图 1  用温度、重子密度和同位旋不对称度表示的核物质相图. 图片更新自[8]

    Fig. 1.  Nuclear matter phase diagram represented by temperature, baryon density and isospin asymmetry. Figure taken from[8]

    图 2  对称核物质和中子核物质状态方程随密度的关系, 图片更新自[29]

    Fig. 2.  EoS of isospin symmetric nuclear matter and neutron matter as a function of the density, figure taken and updated from[29].

    图 3  地面重离子碰撞实验和天文观测提取到$ E_\text{sym}(\rho_0) $(上)和$ L_\text{sym}(\rho_0) $(下)的结果. (a)和(b)均取自[24]

    Fig. 3.  $ E_\text{sym}(\rho_0) $ (upper panel) and $ L_\text{sym}(\rho_0) $ (lower panel) extracted from terrestrial heavy-ion experiments and astrophysical observations respectively. Panel (a) and Panel (b) both are taken from[24].

    图 4  重离子碰撞中的碰撞参数和反应平面示意图

    Fig. 4.  Sketch of impact parameter and reaction plane in Heavy-ion collisions.

    图 5  UrQMD模型在仅考虑强子相情况下, 模拟0.2—12.8 GeV/u的对心Au+Au碰撞中的温度和密度关联图, 实线和虚线分别表示硬和软的状态方程. 图片取自[34]

    Fig. 5.  Diagram of temperature and maximum density in central Au+Au collisions at 0.2–12.8 GeV/u simulated by the UrQMD model with hadron phase only. Figure taken from[34].

    图 6  直接流$ v_1 $和快度在$ y_{cm} = 0 $的斜率与碰撞能量的关联图. 图片取自[36]

    Fig. 6.  Slope of $ v_1 $ as a function of rapidity at $ y_{cm} = 0 $ of proton versus collision energies. Figure taken from[36].

    图 7  质子椭圆流与碰撞能量的依赖关系. 图片取自[37]

    Fig. 7.  Elliptic flow of proton as a function of collision energies, figure taken from[37].

    图 8  STAR实验测量的组分夸克数约化强子集体流与约化横能量的依赖关系. 图片取自[46]

    Fig. 8.  Constitute quark number scaled elliptic flow of hadrons as a function of quark number scaled transverse energy measured by the STAR experiment. Figure taken from[46].

    图 9  对称核物质压强随密度变化的实验限制. 图片取自[34]

    Fig. 9.  Pressure of the symmetric nuclear matter as a function of density constrained by experimental measurements. Figure taken from[34]

    图 10  KaoS实验测量$ K^+ $介子在Au+Au和Cu+Cu碰撞中产额比随碰撞能量的变化, 来自输运模型IQMD和RQMD的硬EoS和软EoS分别用短线和点线表示. 图片取得自[50]

    Fig. 10.  Yield ratio of $ K^+ $ in Au+Au and Cu+Cu collisions as a function of collision energy measured by the KaoS experiment. The hard and soft EoS from the transport models IQMD and RQMD are represented by dashed and dotted lines, respectively. Figure taken from[50].

    图 11  FOPI实验测量0.4、1.0和1.5 GeV/u的Au+Au碰撞中质子和氘核的椭圆流随快度依赖, 基于IQMD模型硬EoS和软EoS理论计算结果分别用虚线和实线表示. 图片取得自[56]

    Fig. 11.  Elliptic flow of proton and deuteron as a function of rapidity in Au+Au collisions at 0.4, 1.0, and 1.5 GeV/u mesured by the FOPI experiment, red dashed line and black line represent the IQMD predictions with hard EoS and soft EoS respectively. Figure taken from[56].

    图 12  对称能$ E_{\text{sym}} $与密度依赖关系, 其中不同的点来自不同的实验. 图片取自[34]

    Fig. 12.  The symmetric energy $ E_{\text{sym}} $ as a function of nuclear matter density, symbols represent results obtained from different experiments. Figure taken from[34]

    图 13  (左)30 MeV/u的Ar+Au反应中, 轻带电粒子的约化中子 丰度随实验室角度的变化关系, 曲线为理论模型计算结果; (右)轻核约化中子丰度小角度区的下降斜率(红色区域)与理论计算(空心圆圈)的比较. 图片取自[58]

    Fig. 13.  (Left) In 30 meV/u Ar+Au reactions, $ Y_{n, ex}/Y_{p, CL} $ as a function of polar angle, curves are theoretical calculations. (Right) Comparison the slope of $ Y_{n, ex}/Y_{p, CL} $ in $ \theta_{lab}<100^{\circ} $ from experiment (red band) and theoretical predictions (open circles). Figure taken from[58]

    图 14  PREX实验装置示意图. 图片取自[60]

    Fig. 14.  Schematic draw of PREX-II experiment, see detail descriptions in text. Figure taken from[60]

    图 15  不同的实验和理论给出的对称能参数$ L_\text{sym}-J_\text{sym} $的限制, 黑色空心圈为PREX-II测量结果, 红色实线和虚线表示其它实验中提取的$ L_\text{sym} = 58.9\pm16 $ MeV的中心值和误差. 图片更新自[63]

    Fig. 15.  Constraints on symmetry energy parameters $ L_\text{sym}-J_\text{sym} $, open circle presents the results of PREX-II experiment, solid and dashed horizontal lines represent the central value and error of $ L_\text{sym} = 58.9\pm16 $ MeV respectively. Figure was taken and updated from[63].

    图 16  FOPI-LAND实验探测器布局图. 图片取自[64]

    Fig. 16.  Detector layout of the FOPI-LAND experiment. Figure taken from[64]

    图 17  ASY-EOS实验探测器布局图, 图片取自[68]

    Fig. 17.  ASY-EOS experiment detector layout, figure were taken from[68]

    图 18  400 MeV/u的Au+Au半中心碰撞(b<7.5 fm)中ASY-EOS实验测量到的中子和带电粒子椭圆流的比值$ v_2^n/v_2^{ch} $和横动量的关联(黑色方框), 三角和圆分别代表UrQMD在硬($ \gamma = 1.5 $)和软($ \gamma = 0.5 $)对称能时计算结果, 实线是对理论计算结果做线性延拓, 得到与实验数据最佳符合时$ \gamma = 0.75\pm0.1 $, 图片取自[68]

    Fig. 18.  Elliptic flow ratio of neutron and charged particle as a function of transverse momentum, in semi-central Au+Au collisions (b<7.5 fm) at 400 MeV/u measured by ASY-EoS experiment. Triangles and squares are UrQMD predictions with hard ($ \gamma = 1.5 $) and soft ($ \gamma = 0.5 $) symmetry energy, solid line is the linear interpolation of predictions which can describe the data best, correspond to $ \gamma = 0.75\pm0.1 $. Figure taken from[68]

    图 19  FOPI实验测量400 MeV/u的核核中心碰撞中$ \pi^-/\pi^+ $产额比与碰撞系统N/Z的依赖(空心菱形)和IBUU04模型在x = 1.0(软EoS)、0.5(中等EoS)和0.(硬EoS)模拟结果比较, 图片取自[72]

    Fig. 19.  $ \pi^-/\pi^+ $ yield ratio measured the FOPI experiment in central nucleus-nucleus collisions at 400 MeV/u as a function of N/Z ratio of the colliding systems (open diamonds), and compared simulation results from the IBUU04 model for x = 1.0 (soft EoS), 0.5 (medium EoS), and 0 (hard EoS). Figure taken from[72]

    图 20  HADES实验(方框)、FOPI实验(圆点)、Stream chamber(三角)和E895(五角星)测量到的约化π多重数与$ <\text{A}_\text{part}> $的关系. 图片取自[81]

    Fig. 20.  π multiplicity measured by HADES(squares), FOPI(filled circles), Stream chamber (triangles) and E895 experiment (star) as a function of $ <\text{A}_\text{part}> $. Figure taken from[81]

    图 21  SπRIT实验装置图, 图片取自[84]

    Fig. 21.  SπRIT experiment setup. Figure taken from[84]

    图 22  SπRIT实验中Tyoto-Array和前角区触发探测器 (KATANA)实物照片, 图片取自[87]

    Fig. 22.  Photo of the Tyoto-Array and the KATANA detector of the SπRIT experiment. Figure taken from[87]

    图 23  (左)SπRIT实验测量270 MeV/u时, 不同Sn+Sn碰撞系统$ \pi^-/\pi^+ $产额比; (右)系统132Sn+124Sn和108Sn+112Sn系统双$ \pi^-/\pi^+ $产额比; 7个输运模型计算结果用不同颜色标记. 图片取自[88]

    Fig. 23.  (Left) $ \pi^-/\pi^+ $ yield ratio measured by the SπRIT experiment in Sn+Sn collisions with different N/Z ratio; (Right) Double $ \pi^-/\pi^+ $ yield ratio in 132Sn+124Sn and 108Sn+112Sn, results from 7 transport models are marked by bands with different color. Figure taken from[88]

    图 24  中子星质量(M)和半径(R)的关系, 其中绿区域为核物质, 红色区域代表在核物质基础上再加入$ {\Lambda}N $相互作用后中子星M-R关系, 其中考虑了两种都可以描述超核数据的YNN相互作用. 图片取自[96]

    Fig. 24.  The relationship between the mass (M) and radius (R) of a neutron star, where the green region represents pure nuclear matter, and the red region shows the M-R relationship of neutron stars after incorporating ΛN interactions on top of the nuclear matter, considering two types of YNN interactions that can both describe hyper-nuclear data. Figure taken from[96]

    图 25  对称核物质(左)和中子核物质(右)中, 超子-核子(YN)和超子-核子-核子(Y NN) 三体相互作用随密度的函数关系. 图片取自[99]

    Fig. 25.  In symmetric nuclear matter (left) and pure neutron matter (right), the hyperon-nucleon (YN) and three-body hyperon-nucleon-nucleon (YNN) interactions as a function of the density. Figure taken from[99]

    图 26  超氚$ ^3_{\Lambda}\text{H} $产额随重离子碰撞能量的变化. 图片取自[101]

    Fig. 26.  Production yields of hyper-triton $ ^3_{\Lambda}\text{H} $ as a function of colliding energies in HICs. Figure taken from[101]

    图 27  3 GeV Au+Au碰撞5—40%碰撞中心度中$ ^3_{\Lambda}\text{H} $和$ ^4_{\Lambda}\text{H} $直接流与快度依赖关系. 图片取自[102]

    Fig. 27.  Directed flow of $ ^3_{\Lambda}\text{H} $ and $ ^4_{\Lambda}\text{H} $ as a function of the rapidity at 3 GeV Au+Au collisions in 5–40% centrality. Figure taken from[102]

    图 28  从能量为$ \sqrt{s_{NN}} = 2—5020 $ GeV重离子碰撞数据中提取到的化学冻出温度(T)和重子化学势($ \mu_B $). 图片取自[108]

    Fig. 28.  Chemical freeze-out temperature (T) and baryon chemical potential ($ \mu_B $) extracted from HICs with colliding energy $ \sqrt{s_{NN}} = 2-5020 $ GeV. Figure taken from[108]

    图 29  FAIR装置上的CBM实验和HADES实验的探测器布局示意图. 图片取自[40]

    Fig. 29.  Schematic diagram of the detector layout of the CBM experiment and the HADES experiment at the FAIR facility. Figure taken from[40]

    图 30  NICA装置上的MPD实验探测器布局示意图. 图片取自[41]

    Fig. 30.  Schematic diagram of the detector layout of the MPD experiment at the NICA facility. Figure taken from[41]

    图 31  韩国RAON装置上的LAMPS实验探测器布局示意图. 图片取自[45]

    Fig. 31.  Schematic diagram of the LAMPS experiment at the RAON facility. Figure taken from[45].

    图 32  HIRFL-CSR加速器布局示意图. 图片取自[120]

    Fig. 32.  Schematic diagram of the HIRFL-CSR facility. Figure taken from[120]

    图 33  低温高密核物质测量谱仪探测器布局示意图

    Fig. 33.  Schematic diagram of the CEE experiment.

    图 34  强流重离子加速器装置(HIAF)布局示意图. 图片取自[122]

    Fig. 34.  Schematic diagram of the HIAF facility. Figure taken from[122].

    表 1  世界上重离子加速器与其典型实验, 基于文献[108]数据扩充

    Table 1.  Heavy-ion accelerator in the world and its typical Experiments, expanded based on data listed in[108]

    Facility $ \sqrt{s_{NN}} $ (GeV) Period Experiments
    Bevalac 2.0-2.7 1975-1993 EOS/et al.
    SIS18 2.4-2.7 1990-now FOPI/Hades/et al.
    FRIB 1.9-2.1 >2025 AT-TPC$ ^* $
    RIBF 1.9-2.1 1986-now SπRIT
    RAON 1.9-2.0 >2030 LAMPS
    HIRFL 2.0-2.4 2008-now CEE/ETE
    Nuclotron 2.0-3.5 2000-now BM@N
    JPARC-HI 2.0-6.2 >2030 DHS
    SIS100 2.7-5.0 >2029 CBM/Hades
    NICA 2.7-11.0 >2025 BM@N/MPD
    RHIC 3.0-200 2000-2025 STAR
    SPS 4.5-17.3 1981-now NA49/NA61/SHINE
    AGS 2.7-4.8 2022-now E895/et al.
    HIAF 2.2-3.5 >2027 CEE+/CHNS
    LHC 2760 2018-now ALICE
    LHC 72 >2027 LHCb/ALICE-FT
    下载: 导出CSV
  • [1]

    Wilson K G 1974 Phys. Rev. D 10 2445Google Scholar

    [2]

    Ishii N, Aoki S, Hatsuda T 2007 Phys. Rev. Lett. 99 022001Google Scholar

    [3]

    Inoue T 2021 Few Body Syst. 62 106Google Scholar

    [4]

    Nemura H 2011 Few Body Syst. 50 105Google Scholar

    [5]

    Pásztor A 2024 EPJ Web Conf. 296 01009Google Scholar

    [6]

    Weinberg S 1979 Physica A 96 327Google Scholar

    [7]

    Weinberg S 1991 Nucl. Phys. B 363 3Google Scholar

    [8]

    Drischler C, Holt J W, Wellenhofer C 2021 Ann. Rev. Nucl. Part. Sci. 71 403Google Scholar

    [9]

    Machleidt R, Sammarruca F 2016 Phys. Scripta 91 083007Google Scholar

    [10]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93 054314Google Scholar

    [11]

    Lee D 2009 Prog. Part. Nucl. Phys. 63 117Google Scholar

    [12]

    Elhatisari S, Bovermann L, Ma Y, et al 2024 Nature 630 59Google Scholar

    [13]

    马远卓, 吕炳楠, 李宁, 王倩 2024 原子核物理评论 41 172Google Scholar

    MA Y Z, Lv B N, Li N, Wang Q 2024 Nucl. Phys. Rev. 41 172Google Scholar

    [14]

    Luo X, Shi S, Xu N, Zhang Y 2020 Particles 3 278Google Scholar

    [15]

    Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C, Szabo K K 2020 Phys. Rev. Lett. 125 052001Google Scholar

    [16]

    Andronic A, Braun-Munzinger P, Redlich K, Stachel J 2018 Nature 561 321Google Scholar

    [17]

    McLerran L, Pisarski R D 2007 Nucl. Phys. A 796 83Google Scholar

    [18]

    Weber F 2001 J. Phys. G 27 465Google Scholar

    [19]

    Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 Nature 467 1081Google Scholar

    [20]

    Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W 2022 Astrophys. J. Lett. 934 L17Google Scholar

    [21]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Harding A K, Ho W C G, Lattimer J M, Ludlam R M, Mahmoodifar S, Morsink S M, Ray P S, Strohmayer T E, Wood K S, Enoto T, Foster R, Okajima T, Prigozhin G, Soong Y 2019 Astrophys. J. Lett. 887 L24Google Scholar

    [22]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Ho W C G, Lattimer J M, Loewenstein M, Morsink S M, Ray P S, Wolff M T, Baker C L, Cazeau T, Manthripragada S, Markwardt C B, Okajima T, Pollard S, Cognard I, Cromartie H T, Fonseca E, Guillemot L, Kerr M, Parthasarathy A, Pennucci T T, Ransom S, Stairs I 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [24]

    Li B A, Krastev P G, Wen D H, Zhang N B 2019 Eur. Phys. J. A 55 117Google Scholar

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [26]

    Alvarez-Castillo D E, Blaschke D B, Grunfeld A G, Pagura V P 2019 Phys. Rev. D 99 063010Google Scholar

    [27]

    Li B A, Cai B J, Xie W J, Zhang N B 2021 Universe 7 182Google Scholar

    [28]

    HADES Collaboration, Adamczewski-Musch J, et al 2019 Nature Phys. 15 1040Google Scholar

    [29]

    Fuchs C, Wolter H H 2006 Eur. Phys. J. A 30 5Google Scholar

    [30]

    Garg U, Colò G 2018 Prog. Part. Nucl. Phys. 101 55Google Scholar

    [31]

    Margueron J, Hoffmann Casali R, Gulminelli F 2018 Phys. Rev. C 97 025805Google Scholar

    [32]

    Li B A, Cai B J, Chen L W, Xie W J, Xu J, Zhang N B 2022 Nuovo Cim. C 45 54

    [33]

    Bleicher M, Zabrodin E, Spieles C, Bass S, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W 1999 J. Phys. G 25 1859Google Scholar

    [34]

    Sorensen A, Agarwal K, Brown K W, Chajęcki Z, Danielewicz P, Drischler C, Gandolfi S, Holt J W, Kaminski M, Ko C M, Kumar R, Li B A, Lynch W G, McIntosh A B, Newton W G, Pratt S, Savchuk O, Stefaniak M, Tews I, Tsang M B, Vogt R, Wolter H, Zbroszczyk H, Abbasi N, Aichelin J, Andronic A, Bass S A, Becattini F, Blaschke D, Bleicher M, Blume C, Bratkovskaya E, Brown B A, Brown D A, Camaiani A, Casini G, Chatziioannou K, Chbihi A, Colonna M, Cozma M D, Dexheimer V, Dong X, Dore T, Du L, Dueñas J A, Elfner H, Florkowski W, Fujimoto Y, Furnstahl R J, Gade A, Galatyuk T, Gale C, Geurts F, Gramegna F, Grozdanov S, Hagel K, Harris S P, Haxton W, Heinz U, Heller M P, Hen O, Hergert H, Herrmann N, Huang H Z, Huang X G, Ikeno N, Inghirami G, Jankowski J, Jia J, Jiménez J C, Kapusta J, Kardan B, Karpenko I, Keane D, Kharzeev D, Kugler A, Le Fèvre A, Lee D, Liu H, Lisa M A, Llope W J, Lombardo I, Lorenz M, Marchi T, McLerran L, Mosel U, Motornenko A, Müller B, Napolitani P, Natowitz J B, Nazarewicz W, Noronha J, Noronha-Hostler J, Odyniec G, Papakonstantinou P, Paulínyová Z, Piekarewicz J, Pisarski R D, Plumberg C, Prakash M, Randrup J, Ratti C, Rau P, Reddy S, Schmidt H R, Russotto P, Ryblewski R, Schäfer A, Schenke B, Sen S, Senger P, Seto R, Shen C, Sherrill B, Singh M, Skokov V, Spaliński M, Steinheimer J, Stephanov M, Stroth J, Sturm C, Sun K J, Tang A, Torrieri G, Trautmann W, Verde G, Vovchenko V, Wada R, Wang F, Wang G, Werner K, Xu N, Xu Z, Yee H U, Yennello S, Yin Y 2024 Prog. Part. Nucl. Phys. 134 104080Google Scholar

    [35]

    Voloshin S, Zhang Y 1996 Z. Phys. C 70 665Google Scholar

    [36]

    HADES Collaboration, Adamczewski-Musch J, et al 2023 Eur. Phys. J. A 59 80Google Scholar

    [37]

    ALICE Collaboration, Aamodt K, et al 2010 Phys. Rev. Lett. 105 252302Google Scholar

    [38]

    Herrmann N, Wessels J P, Wienold T 1999 Ann. Rev. Nucl. Part. Sci. 49 581Google Scholar

    [39]

    Danielewicz P, Lacey R, Lynch W G 2002 Science 298 1592Google Scholar

    [40]

    Herrmann N 2022 EPJ Web Conf. 259 09001Google Scholar

    [41]

    MPD Collaboration, Abgaryan V, et al 2022 Eur. Phys. J. A 58 140Google Scholar

    [42]

    Guo D, He X, Li P, Qin Z, Hu C, Wang B, Zhou Y, Zheng K, Zhang Y, Wei X, Yang H, Hu D, Shao M, Duan L, Yu Y, Sun Z, Wang Y, Li Q, Xiao Z 2024 Eur. Phys. J. A 60 36Google Scholar

    [43]

    Brown B A, Gade A, Stroberg S R, Escher J, Fossez K, Giuliani P, Hoffman C R, Nazarewicz W, Seng C Y, Sorensen A, Vassh N, Bazin D, Brown K W, Capri M A, Crawford H, Danielewic P, Drischler C, Garcia Ruiz R F, Godbey K, Grzywacz R, Hlophe L, Holt J W, Iwasaki H, Lee D, Lenzi S M, Liddick S, Lubna R, Macchiavelli A O, Martinez Pinedo G, McCoy A, Mercenne A, Minamisono K, Monteagudo B, Navratil P, Ringle R, Sargsyan G, Schatz H, Spieker M C, Volya A, Zegers R G, Zelevinsky V, Zhang X 2024

    [44]

    SπRIT Collaboration Shane R, et al 2015 Nucl. Instrum. Meth. A 784 513Google Scholar

    [45]

    Hong B, Ahn D, Ahn J, Bae J, Bae Y, Bok J, Choi S, Do S, Heo C, Huh J, Hwang J, Jang Y, Kang B, Kim A, Kim B, Kim C, Kim E J, Kim G, Kim G, Kim H, Kim J, Kim J, Kim S, Kim Y, Kim Y, Kim Y, Kim Y, Kweon M, Lee C, Lee H, Lee H, Lee H, Lee J, Lee J, Lee J W, Lee J, Lee S, Lee S, Lim S, Moon D, Nam S, Park J, Park J, Seo J, Yang H 2023 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 541 260Google Scholar

    [46]

    STAR Collaboration, Abdallah M S, et al 2022 Phys. Lett. B 827 137003Google Scholar

    [47]

    Li B A 2002 Phys. Rev. Lett. 88 192701Google Scholar

    [48]

    Chen L W, Ko C M, Li B A 2003 Nucl. Phys. A 729 809Google Scholar

    [49]

    Yong G C, Li B A, Xiao Z G, Lin Z W 2022 Phys. Rev. C 106 024902Google Scholar

    [50]

    Hartnack C, Oeschler H, Leifels Y, Bratkovskaya E L, Aichelin J 2012 Phys. Rept. 510 119Google Scholar

    [51]

    Gustafsson H A, Gutbrod H H, Kolb B, Löhner H, Ludewigt B, Poskanzer A M, Renner T, Riedesel H, Ritter H G, Warwick A, Weik F, Wieman H 1984 Phys. Rev. Lett. 52 1590Google Scholar

    [52]

    EOS Colllaboration, Partlan M D, et al 1995 Phys. Rev. Lett. 75 2100Google Scholar

    [53]

    E895 Collaboration, Liu H, et al 2000 Phys. Rev. Lett. 84 5488Google Scholar

    [54]

    E877 Collaboration, Barrette J, et al 1997 Phys. Rev. C 56 3254Google Scholar

    [55]

    FOPI Collaboration, Gobbi A, et al 1993 Nucl. Instrum. Meth. A 324 156Google Scholar

    [56]

    FOPI Collaboration, Reisdorf W, et al 2012 Nucl. Phys. A 876 1Google Scholar

    [57]

    Xu H, Tsang M, Liu T, Liu X, Lynch W, Tan W, Verde G, VanderMolen A, Wagnera A, Xib H, Gelbke C, Beaulieu L, Davin B, Larochellec Y, Lefort T, de Souza R, Yanez R, Viola V, Charity R, Sobotka L 2000 Phys. Rev. Lett. 85 716Google Scholar

    [58]

    Zhang Y, Tian J, Cheng W, Guan F, Huang Y, Li H, Lü L, Wang R, Wang Y, Wu Q, Yi H, Zhang Z, Zhao Y, Duan L, Hu R, Huang M, Jin G, Jin S, Lu C, Ma J, Ma P, Wang J, Yang H, Yang Y, Zhang J, Zhang Y, Zhang Y, Ma C, Qiao C, Tsang M B, Xiao Z 2017 Phys. Rev. C 95 041602

    [59]

    Roca-Maza X, Centelles M, Vinas X, Warda M 2011 Phys. Rev. Lett. 106 252501Google Scholar

    [60]

    Zhang W 2023 Phd thesis, Stony Brook University

    [61]

    Donnelly T W, Dubach J, Sick I 1989 Nucl. Phys. A 503 589Google Scholar

    [62]

    PREX Collaboration, Adhikari D, et al 2021 Phys. Rev. Lett. 126 172502Google Scholar

    [63]

    Reed B T, Fattoyev F J, Horowitz C J, Piekarewicz J 2021 Phys. Rev. Lett. 126 172503Google Scholar

    [64]

    FOPI Collaboration Y Leifels, et al 1993 Phys. Rev. Lett. 71 963Google Scholar

    [65]

    LAND Collaboration, Blaich T, et al 1992 Nucl. Instrum. Meth. A 314 136Google Scholar

    [66]

    Russotto P, Wu P, Zoric M, Chartier M, Leifels Y, Lemmon R, Li Q, Lukasik J, Pagano A, Pawlowski P, Trautmann W 2011 Phys. Lett. B 697 471Google Scholar

    [67]

    Cozma M D, Leifels Y, Trautmann W, Li Q, Russotto P 2013 Phys. Rev. C 88 044912Google Scholar

    [68]

    Russotto P, Gannon S, Kupny S, Lasko P, Acosta L, Adamczyk M, Al-Ajlan A, Al-Garawi M, Al-Homaidhi S, Amorini F, Auditore L, Aumann T, Ayyad Y, Basrak Z, Benlliure J, Boisjoli M, Boretzky K, Brzychczyk J, Budzanowski A, Caesar C, Cardella G, Cammarata P, Chajecki Z, Chartier M, Chbihi A, Colonna M, Cozma M D, Czech B, De Filippo E, Di Toro M, Famiano M, Gašparić I, Grassi L, Guazzoni C, Guazzoni P, Heil M, Heilborn L, Introzzi R, Isobe T, Kezzar K, Kiš M, Krasznahorkay A, Kurz N, La Guidara E, Lanzalone G, Le Fèvre A, Leifels Y, Lemmon R C, Li Q F, Lombardo I, Lukasik J, Lynch W G, Marini P, Matthews Z, May L, Minniti T, Mostazo M, Pagano A, Pagano E V, Papa M, Pawlowski P, Pirrone S, Politi G, Porto F, Reviol W, Riccio F, Rizzo F, Rosato E, Rossi D, Santoro S, Sarantites D G, Simon H, Skwirczynska I, Sosin Z, Stuhl L, Trautmann W, Trifirò A, Trimarchi M, Tsang M B, Verde G, Veselsky M, Vigilante M, Wang Y, Wieloch A, Wigg P, Winkelbauer J, Wolter H H, Wu P, Yennello S, Zambon P, Zetta L, Zoric M 2016 Phys. Rev. C 94 034608Google Scholar

    [69]

    Gaitanos T, Di Toro M, Typel S, Baran V, Fuchs C, Greco V, Wolter H H 2004 Nucl. Phys. A 732 24Google Scholar

    [70]

    Li Q, Li Z, Soff S, Bleicher M, Stoecker H 2005 Phys. Rev. C 72 034613Google Scholar

    [71]

    FOPI Collaboration, Reisdorf W, et al 2007 Nucl. Phys. A 781 459Google Scholar

    [72]

    Xiao Z, Li B A, Chen L W, Yong G C, Zhang M 2009 Phys. Rev. Lett. 102 062502Google Scholar

    [73]

    Feng Z Q, Jin G M 2010 Phys. Lett. B 683 140Google Scholar

    [74]

    Xie W J, Su J, Zhu L, Zhang F S 2013 Phys. Lett. B 718 1510Google Scholar

    [75]

    Xu J, Chen L W, Tsang M B, Wolter H, Zhang Y X, Aichelin J, Colonna M, Cozma D, Danielewicz P, Feng Z Q, Le Fevre A, Gaitanos T, Hartnack C, Kim K, Kim Y, Ko C M, Li B A, Li Q F, Li Z X, Napolitani P, Ono A, Papa M, Song T, Su J, Tian J L, Wang N, Wang Y J, Weil J, Xie W J, Zhang F S, Zhang G Q 2016 Phys. Rev. C 93 044609Google Scholar

    [76]

    Xu J, Wolter H, Colonna M, Cozma M D, Danielewicz P, Ko C M, Ono A, Tsang M B, Zhang Y X, Cheng H G, Ikeno N, Kumar R, Su J, Zheng H, Zhang Z, Chen L W, Feng Z Q, Hartnack C, Le Fèvre A, Li B A, Nara Y, Ohnishi A, Zhang F S 2024 Phys. Rev. C 109 044609Google Scholar

    [77]

    E-0895 Collaboration, Klay J L, et al 2003 Phys. Rev. C 68 054905Google Scholar

    [78]

    Wolf A, Appenheimer M, Averbeck R, Charbonnier Y, Diaz J, Doppenschmidt A, Hejny V, Hlavac S, Holzmann R, Kugler A, Lohner H, Marin A, Metag V, Novotny R, Ostendorf R, Pleskac R, Schubert A, Schutz Y, Simon R, Stratmann R, Stroher H, Tlusty P, Vogt P, Wagner V, Weiss J, Wilschut H, Wissmann F, Wolf M 1998 Phys. Rev. Lett. 80 5281Google Scholar

    [79]

    Wagner A, Muntz C, Oeschler H, Sturm C T, Barth R, Cieslak M, Debowski M, Grosse E, Koczon P, Mang M, Miskowiec D, Schicker R, Schwab E, Senger P, Beckerle P, Brill D, Shin Y, Strobele H, Walus W, Kohlmeyer B, Puhlhofer F, Speer J, Volkel K 1998 Phys. Lett. B 420 20Google Scholar

    [80]

    HADES Collaboration, Agakishiev G, et al 2009 Eur. Phys. J. A 41 243Google Scholar

    [81]

    HADES Collaboration, Adamczewski-Musch J, et al 2020 Eur. Phys. J. A 56 259Google Scholar

    [82]

    Kubo T, Ishihara M, Inabe N, Kumagai H, Tanihata I, Yoshida K, Nakamura T, Okuno H, Shimoura S, Asahi K 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 70 309

    [83]

    Motobayashi T 2010 Nucl. Phys. A 834 707cGoogle Scholar

    [84]

    Kurata-Nishimura M 2017 PoS INPC2016 218

    [85]

    Barney J, Estee J, Lynch W, Isobe T, Jhang G, Kurata-Nishimura M, McIntosh A, Murakami T, Shane R, Tangwancharoen S, Tsang M, Cerizza G, Kaneko M, Lee J, Tsang C, Wang R, Anderson C, Baba H, Chajecki Z, Famiano M, Hodges-Showalter R, Hong B, Kobayashi T, Lasko P, Łukasik J, Nakatsuka N, Olsen R, Otsu H, Pawłowski P, Pelczar K, Powell W, Sakurai H, Santamaria C, Setiawan H, Taketani A, Winkelbauer J, Xiao Z, Yennello S, Yurkon J, Zhang Y 2021 Rev. Sci. Instrum. 92 063302Google Scholar

    [86]

    Lasko P, Adamczyk M, Brzychczyk J, Hirnyk P, Łukasik J, Pawłowski P, Pelczar K, Snoch A, Sochocka A, Sosin Z, Barney J, Cerizza G, Estee J, Isobe T, Jhang G, Kaneko M, Kurata-Nishimura M, Lynch W, Murakami T, Santamaria C, Tsang M, Zhang Y 2017 Nucl. Instrum. Meth. A 856 92Google Scholar

    [87]

    Barney J E 2019 Phd thesis, Michigan State University

    [88]

    SπRIT & TEMP Collaboration, Jhang G, et al 2021 Phys. Lett. B 813 136016Google Scholar

    [89]

    Yong G C 2021 Phys. Rev. C 104 014613Google Scholar

    [90]

    Glendenning N K 1982 Phys. Lett. B 114 392Google Scholar

    [91]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 38 2700Google Scholar

    [92]

    Gal A, Hungerford E V, Millener D J 2016 Rev. Mod. Phys. 88 035004Google Scholar

    [93]

    Schaffner J, Mishustin I N 1996 Phys. Rev. C 53 1416Google Scholar

    [94]

    Schaffner-Bielich J 2010 Nucl. Phys. A 835 279Google Scholar

    [95]

    Yong G C 2023 Phys. Rev. D 108 L091507Google Scholar

    [96]

    Lonardoni D, Lovato A, Gandolfi S, Pederiva F 2015 Phys. Rev. Lett. 114 092301Google Scholar

    [97]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 6131

    [98]

    Bombaci I 2017 JPS Conf. Proc. 17 101002

    [99]

    Gerstung D, Kaiser N, Weise W 2020 Eur. Phys. J. A 56 175Google Scholar

    [100]

    Feng Z Q 2021 Eur. Phys. J. A 57 18Google Scholar

    [101]

    Ji Y 2024 EPJ Web Conf. 296 02004Google Scholar

    [102]

    STAR Collaboration, Aboona B, et al 2023 Phys. Rev. Lett. 130 212301Google Scholar

    [103]

    Oliinychenko D, Shen C, Koch V 2021 Phys. Rev. C 103 034913Google Scholar

    [104]

    Neidig T, Gallmeister K, Greiner C, Bleicher M, Vovchenko V 2022 Phys. Lett. B 827 136891Google Scholar

    [105]

    Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nature Commun. 15 1074Google Scholar

    [106]

    Coci G, Gläßel S, Kireyeu V, Aichelin J, Blume C, Bratkovskaya E, Kolesnikov V, Voronyuk V 2023 Phys. Rev. C 108 014902Google Scholar

    [107]

    Bruce R, Alemany Fernandez R, Argyropoulos T, Bartosik H, Bracco C, Cai R, D’ Andrea M, Frasca A, Hermes P, Jowett J, Mirarchi D, Redaelli S, Solfaroli M, Triantafyllou N, Wenninger J 2023 JACoW IPAC2023 MOPL021

    [108]

    Galatyuk T 2019 Nucl. Phys. A 982 163Google Scholar

    [109]

    Fu W j, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032Google Scholar

    [110]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022Google Scholar

    [111]

    Hippert M, Grefa J, Manning T A, Noronha J, Noronha-Hostler J, Portillo Vazquez I, Ratti C, Rougemont R, Trujillo M 2023

    [112]

    Basar G 2024 Phys. Rev. C 110 015203Google Scholar

    [113]

    Odyniec G 2019 PoS CORFU2018 151

    [114]

    Spiller P, Balss R, Bartolome P, Blaurock J, Blell U, Boine-Frankenheim O, Bozyk L, Chorowski M, Eisel T, Frey M, Giacomini T, Kaether F, Khodzhibagiyan H, Klammes S, Klingbeil H, Koenig H, Kornilov V, Kowina P, Lens D, Meier J, Ondreka D, Petzenhauser I, Plyusnin V, Pongrac I, Pyka N, Raginel V, Rottlaender P, Roux C, Schmidt J, Schwickert M, Sugita K, Szwangruber A, Szwangruber P, Trockel R, Waldt A, Welker H, Wilfert S, Winkler T, Winters D 2020 JINST 15 T12013Google Scholar

    [115]

    Friman B, et al 2011 Lect. Notes Phys. 814

    [116]

    Kapishin M 2019 Nucl. Phys. A 982 967Google Scholar

    [117]

    Sissakian A N, Kekelidze V D, Sorin A S 2009 Nucl. Phys. A 827 630CGoogle Scholar

    [118]

    Ahn J K, Bak S I, Blumenfeld Y, Chai J S, Cheon B G, Cheoun M K, Cho D, Cho Y S, Choi B H, Choi C I, Choi E M, Choi H J, Choi M S, Choi S, Choi T K, Choi Y S, Chung K H, Ha E J, Ha J H, Hahn I S, Han J M, Han J M, Hong B, Hong S W, Hong W, Hwang S H, Hyun C H, Jang D Y, Jang J, Jeon D O, Jeong D, Jeong S C, Jhang G, Joo E, Kadi Y, Kang B H, Kang H S, Kim A, Kim D Y, Kim D L, Kim D U, Kim E J, Kim G D, Kim H C, Kim I G, Kim J T, Kim J W, Kim J K, Kim S H, Kim S H, Kim S H, Kim W, Kim Y K, Ko S K, Kwon M, Kwon Y K, Lee B Y, Lee B N, Lee C H, Lee C W, Lee C S, Lee K S, Lee H J, Lee H S, Lee H S, Lee J H, Lee K O, Lee K S, Lee S D, Lee S K, Lee S H, Lee Y S, Lee Y O, Lee Y Y, Manchanda V K, Moon C B, Nam S I, Namkung W, Nolen J A, Oh B H, Oh J H, Oh Y, Park B Y, Park J A, Park J Y, Park K H, Park S H, Park T S, Park W Y, Ryu C Y, Ryu M S, Ryu S Y, Sakai H, Seo H J, Shin J W, Shin S W, Sigg P, Sim K S, So W Y, Song H S, Song T Y, Suh B J, Tenreiro C, Tong Z, Tribble R E, Woo H J, Yano Y, Yang H R, Yang Y K, Yeon Y H, Yi W J, Yu B G, Yu D H, Yoo I K, Yu S Y, Yun C C 2013 Few Body Syst. 54 197Google Scholar

    [119]

    Hong B 2024 Private Communication

    [120]

    夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 467

    XIA J W, ZHAN W L, WEI B W, YUAN Y J, ZHAO H W, YANG J C, SHI J, SHENG L N, YANG W Q, MAO L J 2016 Science Bulletin 61 467

    [121]

    Yang J, Sun L, Yuan Y 2023 JACoW CYCLOTRONS2022 MOAI01

    [122]

    Zhou X, Yang J 2022 AAPPS Bull. 32 35Google Scholar

    [123]

    Saito T R, Dou W, Drozd V, Ekawa H, Escrig S, He Y, Kalantar-Nayestanaki N, Kasagi A, Kavatsyuk M, Liu E, Ma Y, Minami S, Muneem A, Nakagawa M, Nakazawa K, Rappold C, Saito N, Scheidenberger C, Taki M, Tanaka Y K, Yoshida J, Yoshimoto M, Wang H, Zhou X 2021 Nature Rev. Phys. 3 803Google Scholar

    [124]

    Mroczek D, Yao N, Zine K, Noronha-Hostler J, Dexheimer V, Haber A, Most E R 2024

    [125]

    Huang M, Zhuang P 2023 Symmetry 15 541Google Scholar

    [126]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301. [Erratum: Phys.Rev.Lett. 96, 039901 (2006)]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301. [Erratum: Phys.Rev.Lett. 96, 039901 (2006)]

    [127]

    STAR Collaboration, Adamczyk L, et al 2017 Nature 548 62Google Scholar

    [128]

    STAR Collaboration, Abdallah M S, et al 2023 Nature 614 244Google Scholar

    [129]

    Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72 070101 [梁作堂, 王群, 马余刚 2023 72 070101]

    Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72 070101

    [130]

    尹伊 2023 物理学报 72 111201Google Scholar

    Yi Y 2023 Acta Phys. Sin. 72 111201Google Scholar

    [131]

    浦实, 黄旭光 2023 物理学报 72 071202Google Scholar

    Pu S, Huang X G 2023 Acta Phys. Sin. 72 071202Google Scholar

    [132]

    江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威 2023 物理学报 72 072504Google Scholar

    Jiang F Z, Wu X Y, Yu Q H, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72 072504Google Scholar

  • [1] 吴晓霞, 廖棱锐, 程锐, 康炜, 王昭, 史路林, 王国东, 陈燕红, 周泽贤, 陈良文, 杨杰. 利用Aardvark程序预测HIAF上强流重离子束驱动产生的高能量密度物质状态. 物理学报, doi: 10.7498/aps.74.20241553
    [2] 刘勋, 范琰, 郭文军. 核内高动量分布对韧致辐射光子产生的影响. 物理学报, doi: 10.7498/aps.74.20250239
    [3] 谢浈, 李景行, 郑华, 张文超, 朱励霖, 刘星泉, 谭志光, 周代梅, BonaseraAldo. 高能重离子碰撞中心快度区鉴别粒子的平均横动量. 物理学报, doi: 10.7498/aps.73.20240905
    [4] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, doi: 10.7498/aps.72.20230454
    [5] 林树, 田家源. 引力形状因子的介质修正. 物理学报, doi: 10.7498/aps.72.20222473
    [6] 盛欣力, 梁作堂, 王群. 重离子碰撞中的矢量介子自旋排列. 物理学报, doi: 10.7498/aps.72.20230071
    [7] 孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华. 重离子碰撞中QCD物质整体极化的实验测量. 物理学报, doi: 10.7498/aps.72.20222452
    [8] 朱希睿, 孟续军, 田明锋. 包含过渡区的等离子体电子状态方程的理论研究. 物理学报, doi: 10.7498/aps.57.4049
    [9] 刘建业, 郝焕锋, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的介质效应. 物理学报, doi: 10.7498/aps.57.2136
    [10] 姜志进. 高能重离子碰撞中的参与者数和核子-核子碰撞数. 物理学报, doi: 10.7498/aps.56.5191
    [11] 卞宝安, 周宏余, 张丰收. 核物质对称能和重离子碰撞中径向流阈能的同位旋效应. 物理学报, doi: 10.7498/aps.56.1334
    [12] 李 强, 姜志进, 夏宏福. 高能重离子碰撞中的J/ψ反常抑制现象. 物理学报, doi: 10.7498/aps.55.5161
    [13] 刘建业, 邢永忠, 郭文军. 同位旋依赖的动量相关作用对同位旋分馏的影响随入射道条件的演化. 物理学报, doi: 10.7498/aps.55.91
    [14] 张 芳, 左 维, 雍高产. 利用中-质微分流探测对称能的高密行为. 物理学报, doi: 10.7498/aps.55.5769
    [15] 刘建业, 郭文军, 邢永忠, 李希国, 左 维. 中能重离子碰撞中晕核反应动力学. 物理学报, doi: 10.7498/aps.55.1068
    [16] 雍高产, 李宝安, 陈列文, 左 维. 重离子碰撞中的对称势翻转. 物理学报, doi: 10.7498/aps.55.5166
    [17] 郭文军, 刘建业, 邢永忠. 同位旋依赖的动量相关作用对同位旋分馏过程的影响和机理. 物理学报, doi: 10.7498/aps.54.3082
    [18] 邢永忠, 刘建业, 郭文军, 方玉田. 重离子碰撞中同位旋分馏对碰撞系统同位旋的依赖性. 物理学报, doi: 10.7498/aps.53.2106
    [19] 姜志进. 带电多重数赝快度密度对碰撞对心度依赖关系研究. 物理学报, doi: 10.7498/aps.53.1020
    [20] 安志刚. 等离子体状态方程的活动性参量展开. 物理学报, doi: 10.7498/aps.28.140
计量
  • 文章访问数:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-09

/

返回文章
返回