搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象

代雪峰 贡同

引用本文:
Citation:

铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象

代雪峰, 贡同

Decoupling of Majorana bound states in T-shaped double-quantum-dot structure with ferromagnetic leads

Dai Xue-Feng, Gong Tong
PDF
HTML
导出引用
  • 通过将马约拉纳束缚态侧耦合到主通道中的量子点, 从理论上研究了T形双量子点体系的输运性质. 结果表明, 调整侧耦合量子点能级和量子点-马约拉纳束缚态耦合方式, 可以在线性输运区观察到马约拉纳束缚态与T形双量子点解耦的现象. 引入铁磁性电极后, 电导平台的出现或损坏明显依赖于体系中磁场与电极极化方向的差异, 而马约拉纳束缚态的解耦现象仍然稳固. 本工作有助于进一步诠释T形双量子点体系中马约拉纳束缚态的解耦现象, 为深入认知以及探测马约拉纳束缚态提供理论支持.
    The significant potential applications of Majorana bound state (MBS) in topological quantum computing manifest the importance and necessity of relevant in-depth research. To understand the physical properties of MBS, the most practical approach is to integrate it to a mesoscopic circuit and then investigate its quantum transport behaviors. In this work, we investigate the transport properties in the systems with MBS, and provide theoretical support for its further understanding and detection, by utilizing the nonequilibrium Green’s function method and scattering matrix theory. Specifically, we investigate theoretically the transport properties in a T-shaped double-quantum dot structure, by considering MBS to be coupled to the dot in the main channel, which shows that in the linear transmission region, when the level of side-coupled dot is tuned to the Fermi energy level, the contribution of MBS to the conductance is eliminated under weak and strong Coulomb interaction. The side-coupled dot is far away from the Fermi energy level, leading to different results. When Majorana zero mode is added, the linear conductance is independent of the level of the side-coupled quantum dot, and the conductance plateau appears. However, with coupling between the MBSs, the linear conductance is the same as that without coupling between the MBSs. The decoupling phenomenon of the MBS remains strong. Therefore, the signature of the MBS can be eliminated by adjusting the level of the side-coupled quantum dot or the inter-MBS coupling. When ferromagnetic leads are introduced, the appearance or disappearance of the conductance plateau is clearly dependent on the difference between the magnetic field direction and the lead polarization direction in the system, whereas the decoupling behavior of the MBS is still existent. This work contributes to further explaining the decoupling phenomenon of MBSs in a T-shaped double-quantum-dot system, and presents a theoretical approach to more in-depth understanding and detection of the MBS.
      通信作者: 代雪峰, xf_dai@126.com
    • 基金项目: 中央高校基本科研业务费(批准号: N2305001, N2305014)资助的课题.
      Corresponding author: Dai Xue-Feng, xf_dai@126.com
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities of Ministry of Education, China (Grant Nos. N2305001, N2305014).
    [1]

    Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, Beenakker C W J 2013 Phys. Rev. B 88 035121Google Scholar

    [2]

    Reimann S M, Manninen M 2002 Rev. Mod. Phys. 74 1283Google Scholar

    [3]

    van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1Google Scholar

    [4]

    Meir Y, Wingreen N S, Lee P A 1993 Phys. Rev. Lett. 70 2601Google Scholar

    [5]

    Zheng Y S, Lü T Q, Zhang C X, Su W H 2004 Physica E 24 290Google Scholar

    [6]

    Gong W J, Zheng Y S, Liu Y, Lü T Q 2006 Phys. Rev. B 73 245329Google Scholar

    [7]

    Sato M, Aikawa H, Kobayashi K, Katsumoto S, Iye Y 2005 Phys. Rev. Lett. 95 066801Google Scholar

    [8]

    Žitko R, Bonča J 2007 Phys. Rev. B 76 241305Google Scholar

    [9]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [10]

    Lee W R, Kimand J U, Sim H S 2008 Phys. Rev. B 77 033305Google Scholar

    [11]

    Michalek G, Bulka B R 2022 J. Magn. Magn. Mater. 544 168700Google Scholar

    [12]

    Ding G H, Kim C K, Nahm K 2005 Phys. Rev. B 71 205313Google Scholar

    [13]

    Eto M, Sakano R 2020 Phys. Rev. B 102 245402Google Scholar

    [14]

    Akera H 1993 Phys. Rev. B 47 6835Google Scholar

    [15]

    Brandes T, Kramer B 1999 Phys. Rev. Lett. 83 3021Google Scholar

    [16]

    Głodzik S, Wójcik K P, Weymann I, Domański T 2017 Phys. Rev. B 95 125419Google Scholar

    [17]

    Monteros A L, Uppal G S, McMillan S R, Crisan M, Tifrea I 2014 Eur. Phys. J. B 87 302Google Scholar

    [18]

    Piotr M, Wójcik K P, Weymann I 2022 Phys. Rev. B 105 075418Google Scholar

    [19]

    Wójcik K P, Weymann I 2014 Phys. Rev. B 90 115308Google Scholar

    [20]

    Wójcik K P, Weymann I 2015 Phys. Rev. B 91 134422Google Scholar

    [21]

    Mourik V, Zuo Z, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [22]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [23]

    Stern A 2010 Nature 464 187Google Scholar

    [24]

    Chiu C K, Machida T, Huang Y, Hanaguri T, Zhang F C 2020 Sci. Adv. 6 eaay0443Google Scholar

    [25]

    Žitko R 2011 Phys. Rev. B 83 195137Google Scholar

    [26]

    Smirnov S 2022 Phys. Rev. B 105 205430Google Scholar

    [27]

    Máthé L, Sticlet D, Zârbo L P 2022 Phys. Rev. B 105 155409Google Scholar

    [28]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308Google Scholar

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413Google Scholar

    [30]

    Gong W J, Zhao Y, Gao Z 2015 Curr. Appl. Phys. 15 520Google Scholar

    [31]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307Google Scholar

    [32]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802Google Scholar

    [33]

    Gong T, Zhang L L, Dai X F, Jiang C, Gong W J 2022 Eur. Phys. J. Plus 137 122Google Scholar

    [34]

    Gao Z, Gong W J 2016 Phys. Rev. B 94 104506Google Scholar

    [35]

    Cheng M, Becker M, Bauer B, Bauer B, Lutchyn R M 2014 Phys. Rev. X 4 031051

    [36]

    Weymann I, Wójcik K P, Majek P 2020 Phys. Rev. B 101 235404Google Scholar

    [37]

    Calle A M, Pacheco M, Orellana P A, Otálora J A 2020 Ann. Phys. 532 1900409Google Scholar

    [38]

    Wang X Q, Zhang S F, Han Y, Gong W J 2019 Phys. Rev. B 100 115405Google Scholar

    [39]

    Ramos-Andrade J P, Peña F J, González A, Ávalos-Ovando O, Orellana P A 2017 Phys. Rev. B 96 165413Google Scholar

    [40]

    Žitko R, Bonča J 2008 Phys. Rev. B 77 245112Google Scholar

    [41]

    Žitko R, 2011 Comput. Phys. Commun. 182 2259Google Scholar

    [42]

    Liu Y, Zheng Y S, Gong W J, Lü T Q 2007 Phys. Rev. B 75 195316Google Scholar

  • 图 1  (a) T形双量子点结构示意图. 主通道中量子点侧耦合马约拉纳束缚态(标为$ \eta_1 $), 马约拉纳束缚态出现在受纵向磁场和超导邻近效应影响且具有强自旋-轨道相互作用的纳米线的末端. (b) 普通电极条件下, Nambu表象中T形双量子点结构自旋向上示意图. 量子点的电子、空穴以及马约拉纳束缚态部分用不同的颜色表示

    Fig. 1.  (a) Schematic of a T-shaped double-quantum-dot (TDQD) structure with the quantum dot (QD) in the main channel coupling to the first Majorana bound state (MBS) which is labeled as $ \eta_1 $. The MBSs are assumed to generate at the ends of the one-dimensional nanowire with strong spin-orbit interaction which suffers from longitudinal magnetic field and superconducting proximity effect. (b) Spin-up illustration of our considered TDQDs in the Nambu representation. The electron and hole parts of the QDs and the MBS part are colored differently for comparison.

    图 2  不同条件下的线性电导曲线 (a)下自旋的电导; (b)—(d) $ \varepsilon_{\rm m}=0 $, 0.1, 0.5时上自旋的电导

    Fig. 2.  Linear-conductance curves in different cases: (a) Spin-down result of the linear conductance; (b)–(d) spin-up conductance in the cases of $ \varepsilon_{\rm m}=0 $, 0.1, 0.5.

    图 3  $ \varepsilon_1=0 $时不同参数取值下的铁磁性电极体系的线性电导谱 (a), (b) $ \theta=0 $时的自旋平行结构线性电导谱; (c), (d) $ \theta=0 $时的自旋反平行结构线性电导谱; (e), (f) $ \theta=0.5\pi $时的自旋平行结构线性电导谱; (g), (h) $ \theta=0.5\pi $时的自旋反平行结构线性电导谱

    Fig. 3.  Linear conductance spectra of the TDQD system with ferromagnetic leads when $ \varepsilon_1=0 $: (a), (b) Linear conductances in the P spin configuration with $ \theta=0 $; (c), (d) linear conductances in the AP spin configuration with $ \theta=0 $; (e), (f) linear conductances in the P spin configuration with $ \theta=0.5\pi $; (g), (h) linear conductance in the AP spin configurations with $ \theta=0.5\pi $.

    图 4  $ \varepsilon_1=0 $, $ \lambda=0.1 $时铁磁性电极条件下T 型双量子点体系的磁电阻 (a) $ \varepsilon_{\rm m}=0 $时的磁电阻; (b) $ \varepsilon_{\rm m}=0.1 $时的磁电阻

    Fig. 4.  Magnetoresistance (MR) of the TDQD system with ferromagnetic leads when $ \varepsilon_1=0 $, $ \lambda=0.1 $: (a) MR in the case of $ \varepsilon_{\rm m}=0 $; (b) MR in the case of $ \varepsilon_{\rm m}=0.1 $.

    图 5  Nambu表象中耦合铁磁性电极的T形双量子点结构示意图. 量子点的电子、空穴以及马约拉纳束缚态部分用不同的颜色表示

    Fig. 5.  Illustration of our considered TDQDs with ferromagnetic leads in the Nambu representation. The electron and hole parts of the QDs and the MBS part are colored differently for comparison.

    图 6  $ \varepsilon_1=0 $, $ \varepsilon_{\rm m}=0 $, $ U_2=0.1 $, 0.2, 0.5时铁磁性电极体系中存在库仑相互作用时的线性电导谱线 (a), (b) $ \theta=0 $ 时自旋平行结构线性电导谱; (c), (d) $ \theta=0 $时自旋反平行结构线性电导谱; (e), (f) $ \theta=0.5\pi $时自旋平行结构线性电导谱; (g), (h) $ \theta=0.5\pi $时自旋反平行结构线性电导谱

    Fig. 6.  Linear conductance spectra of the system with ferromagnetic leads when $ \varepsilon_1=0 $, $ \varepsilon_{\rm m}=0 $, $ U_2=0.1, 0.2, 0.5 $: (a), (b) Linear conductances in the P spin configuration with $ \theta=0 $; (c), (d) linear conductances in the AP spin configuration with $ \theta=0 $; (e), (f) linear conductances in the P spin configuration with $ \theta=0.5\pi $; (g), (h) linear conductances in the AP spin configuration with $ \theta=0.5\pi $.

    图 7  $ \lambda=0.1 D $时铁磁性电极耦合体系中Kondo区内量子点侧耦合马约拉纳束缚态的线性电导谱 (a), (b)自旋平行结构线性电导谱; (c), (d)自旋反平行结构线性电导谱

    Fig. 7.  When $ \lambda=0.1 D $, linear conductances in the case of ferromagnetic leads, due to the side-coupled QD in the Kondo regime: (a), (b) Linear conductances in the P spin configuration; (c), (d) linear conductances in the AP spin configuration.

  • [1]

    Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, Beenakker C W J 2013 Phys. Rev. B 88 035121Google Scholar

    [2]

    Reimann S M, Manninen M 2002 Rev. Mod. Phys. 74 1283Google Scholar

    [3]

    van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1Google Scholar

    [4]

    Meir Y, Wingreen N S, Lee P A 1993 Phys. Rev. Lett. 70 2601Google Scholar

    [5]

    Zheng Y S, Lü T Q, Zhang C X, Su W H 2004 Physica E 24 290Google Scholar

    [6]

    Gong W J, Zheng Y S, Liu Y, Lü T Q 2006 Phys. Rev. B 73 245329Google Scholar

    [7]

    Sato M, Aikawa H, Kobayashi K, Katsumoto S, Iye Y 2005 Phys. Rev. Lett. 95 066801Google Scholar

    [8]

    Žitko R, Bonča J 2007 Phys. Rev. B 76 241305Google Scholar

    [9]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [10]

    Lee W R, Kimand J U, Sim H S 2008 Phys. Rev. B 77 033305Google Scholar

    [11]

    Michalek G, Bulka B R 2022 J. Magn. Magn. Mater. 544 168700Google Scholar

    [12]

    Ding G H, Kim C K, Nahm K 2005 Phys. Rev. B 71 205313Google Scholar

    [13]

    Eto M, Sakano R 2020 Phys. Rev. B 102 245402Google Scholar

    [14]

    Akera H 1993 Phys. Rev. B 47 6835Google Scholar

    [15]

    Brandes T, Kramer B 1999 Phys. Rev. Lett. 83 3021Google Scholar

    [16]

    Głodzik S, Wójcik K P, Weymann I, Domański T 2017 Phys. Rev. B 95 125419Google Scholar

    [17]

    Monteros A L, Uppal G S, McMillan S R, Crisan M, Tifrea I 2014 Eur. Phys. J. B 87 302Google Scholar

    [18]

    Piotr M, Wójcik K P, Weymann I 2022 Phys. Rev. B 105 075418Google Scholar

    [19]

    Wójcik K P, Weymann I 2014 Phys. Rev. B 90 115308Google Scholar

    [20]

    Wójcik K P, Weymann I 2015 Phys. Rev. B 91 134422Google Scholar

    [21]

    Mourik V, Zuo Z, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [22]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [23]

    Stern A 2010 Nature 464 187Google Scholar

    [24]

    Chiu C K, Machida T, Huang Y, Hanaguri T, Zhang F C 2020 Sci. Adv. 6 eaay0443Google Scholar

    [25]

    Žitko R 2011 Phys. Rev. B 83 195137Google Scholar

    [26]

    Smirnov S 2022 Phys. Rev. B 105 205430Google Scholar

    [27]

    Máthé L, Sticlet D, Zârbo L P 2022 Phys. Rev. B 105 155409Google Scholar

    [28]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308Google Scholar

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G Y, Zheng Y S 2014 Phys. Rev. B 89 245413Google Scholar

    [30]

    Gong W J, Zhao Y, Gao Z 2015 Curr. Appl. Phys. 15 520Google Scholar

    [31]

    Liu J, Wang J, Zhang F C 2014 Phys. Rev. B 90 035307Google Scholar

    [32]

    Zocher B, Rosenow B 2013 Phys. Rev. Lett. 111 036802Google Scholar

    [33]

    Gong T, Zhang L L, Dai X F, Jiang C, Gong W J 2022 Eur. Phys. J. Plus 137 122Google Scholar

    [34]

    Gao Z, Gong W J 2016 Phys. Rev. B 94 104506Google Scholar

    [35]

    Cheng M, Becker M, Bauer B, Bauer B, Lutchyn R M 2014 Phys. Rev. X 4 031051

    [36]

    Weymann I, Wójcik K P, Majek P 2020 Phys. Rev. B 101 235404Google Scholar

    [37]

    Calle A M, Pacheco M, Orellana P A, Otálora J A 2020 Ann. Phys. 532 1900409Google Scholar

    [38]

    Wang X Q, Zhang S F, Han Y, Gong W J 2019 Phys. Rev. B 100 115405Google Scholar

    [39]

    Ramos-Andrade J P, Peña F J, González A, Ávalos-Ovando O, Orellana P A 2017 Phys. Rev. B 96 165413Google Scholar

    [40]

    Žitko R, Bonča J 2008 Phys. Rev. B 77 245112Google Scholar

    [41]

    Žitko R, 2011 Comput. Phys. Commun. 182 2259Google Scholar

    [42]

    Liu Y, Zheng Y S, Gong W J, Lü T Q 2007 Phys. Rev. B 75 195316Google Scholar

  • [1] 陈书刚, 李学思, 韩宇. 第二类Weyl半金属的金属-超导-金属结中的Andreev反射. 物理学报, 2022, 71(12): 127201. doi: 10.7498/aps.71.20211962
    [2] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [3] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [5] 王素新, 李玉现, 王宁, 刘建军. 耦合Majorana束缚态T形双量子点中的Andreev反射. 物理学报, 2016, 65(13): 137302. doi: 10.7498/aps.65.137302
    [6] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [7] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [8] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质. 物理学报, 2014, 63(2): 027501. doi: 10.7498/aps.63.027501
    [9] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [10] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [11] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [12] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [13] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [14] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象. 物理学报, 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [15] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [16] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [17] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [18] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [19] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
    [20] 董正超, 陈贵宾, 邢定钰, 董锦明. 铁磁-绝缘层-d波超导结中的Andreev反射特性. 物理学报, 2000, 49(11): 2276-2280. doi: 10.7498/aps.49.2276
计量
  • 文章访问数:  1987
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-11-09
  • 上网日期:  2023-12-05
  • 刊出日期:  2024-03-05

/

返回文章
返回