搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案

高嵩 朱艳春 李硕 包尚联

引用本文:
Citation:

核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案

高嵩, 朱艳春, 李硕, 包尚联

An optimal direction strategy of diffusion sensitive gradient mangnetic fields in magnetic resonance diffusion tensor imaging based on generalized Fibonacci sequence

Gao Song, Zhu Yan-Chun, Li Shuo, Bao Shang-Lian
PDF
导出引用
  • 为了准确得到人体内水分子各向异性扩散信息,在核磁共振扩散张量成像及高角分辨率扩散成像实验中,需要在众多空间均匀分布的方向上依次施加扩散敏感梯度磁场,测量水分子在不同方向上的扩散系数. 目前方向分布方案的缺点有方向数目不连续、均匀性有待提高及部分方向数据的损坏会影响整个数据集等. 本文以广义Fibonacci数列为基础,提出新的可以产生连续方向数目的扩散敏感梯度磁场方向分布方案,整个方案的方向均匀性较好,数据集内的部分数据仍然具有很好的空间均匀性,而且本方案中相邻两个扩散敏感梯度磁场方向接近相反,可以减小快速变化的高强度梯度磁场产生的涡流对结果的影响.
    In order to accurately investigate the directionally anisotropic diffusion information of water molecule in tissue, the diffusion sensitive gradient fields need to be applied alone many directions in order to obtain corresponding diffusion coefficients in diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) experiments. The problems facing to current diffusion sensitive gradient magnetic fields encoding schemes include the spatial uniformity of directions needs to be improved, there is no general direction design for arbitrary number of directions, flaw in any directions will cause failure or defect of the whole dataset. In this paper, we provide a generalized Fibonacci number based direction encoding scheme. This scheme can generate nearly uniform distribution for arbitrary number of directions and satisfy the spatial uniformity using partial directions from one raw data set. Besides, the diffusion sensitive gradients of neighboring directions are nearly opposite, which will reduce eddy current induced by rapid varying gradient magnetic fields.
    • 基金项目: 国家自然科学基金(批准号:81171330)和国家重点基础研究发展计划(批准号:2011CB707701)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 81171330) and the National Basic Research Program of China (Grant No. 2011CB707701).
    [1]

    Wedeen V J, Rosene D L, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas J H, Tseng W Y 2012 Science 335 1628

    [2]

    Gao S, Wang X Y, Bao S L 2006 Prog. Nat. Sci. 16 706

    [3]

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703 (in Chinese) [张首誉, 包尚联, 亢孝俭 2013 物理学报 62 208703]

    [4]

    Hasan K M, Parker D L, Alexander A L 2001 J. Magn. Reson. Imaging 13 769

    [5]

    Alderman D, Sherwood M H, Grant D M 1990 J. Magn. Reson. 86 60

    [6]

    Basser P J, Pierpaoli C 1998 Magn. Reson. Med. 39 928

    [7]

    Skare S, Nordell B 1999 Proceedings of the 7th Annual Meeting of ISMRM Philadelphia, United States of America, May 22-28, 1999 p322

    [8]

    Jones D K, Horsfield M A, Simmons A 1999 Magn. Reson. Med. 42 515

    [9]

    Conturo T E, McKinstry R C, Akbudak E, Robinson B H 1996 Magn. Reson. Med. 35 399

    [10]

    Wong S T, Roos M S 1994 Magn. Reson. Med. 32 778

    [11]

    Anderson P G 1993 Applications of Fibonacci numbers (Berlin: Springer-Verlag) p1

    [12]

    Chan R W, Ramsay E A, Cunningham C H, Plewes D B 2009 Magn. Reson. Med. 61 354

    [13]

    Chan R W, Ramsay E A, Cheung E Y, Plewes D B 2012 Magn. Reson. Med. 67 363

    [14]

    Gao S, Zu Z L, Bao S L 2008 Chin. Phys. Lett. 25 325

    [15]

    Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O 2007 IEEE Trans. Med. Imag. 26 68

    [16]

    Qin L, Li Q 2013 Chin. Phys. B 22 038701

    [17]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]

    [18]

    Du J, Diaz E, Carl M, Bae W, Chung C B, Bydder G M 2012 Magn. Reson. Med. 67 645

    [19]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

  • [1]

    Wedeen V J, Rosene D L, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas J H, Tseng W Y 2012 Science 335 1628

    [2]

    Gao S, Wang X Y, Bao S L 2006 Prog. Nat. Sci. 16 706

    [3]

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703 (in Chinese) [张首誉, 包尚联, 亢孝俭 2013 物理学报 62 208703]

    [4]

    Hasan K M, Parker D L, Alexander A L 2001 J. Magn. Reson. Imaging 13 769

    [5]

    Alderman D, Sherwood M H, Grant D M 1990 J. Magn. Reson. 86 60

    [6]

    Basser P J, Pierpaoli C 1998 Magn. Reson. Med. 39 928

    [7]

    Skare S, Nordell B 1999 Proceedings of the 7th Annual Meeting of ISMRM Philadelphia, United States of America, May 22-28, 1999 p322

    [8]

    Jones D K, Horsfield M A, Simmons A 1999 Magn. Reson. Med. 42 515

    [9]

    Conturo T E, McKinstry R C, Akbudak E, Robinson B H 1996 Magn. Reson. Med. 35 399

    [10]

    Wong S T, Roos M S 1994 Magn. Reson. Med. 32 778

    [11]

    Anderson P G 1993 Applications of Fibonacci numbers (Berlin: Springer-Verlag) p1

    [12]

    Chan R W, Ramsay E A, Cunningham C H, Plewes D B 2009 Magn. Reson. Med. 61 354

    [13]

    Chan R W, Ramsay E A, Cheung E Y, Plewes D B 2012 Magn. Reson. Med. 67 363

    [14]

    Gao S, Zu Z L, Bao S L 2008 Chin. Phys. Lett. 25 325

    [15]

    Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O 2007 IEEE Trans. Med. Imag. 26 68

    [16]

    Qin L, Li Q 2013 Chin. Phys. B 22 038701

    [17]

    Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]

    [18]

    Du J, Diaz E, Carl M, Bae W, Chung C B, Bydder G M 2012 Magn. Reson. Med. 67 645

    [19]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

  • [1] 刘良友, 高嵩, 李莎, 李兆同, 夏一帆. 磁共振扩散张量成像中扩散敏感梯度磁场方向分布方案的研究进展. 物理学报, 2020, 69(3): 038702. doi: 10.7498/aps.69.20191346
    [2] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [3] 臧锐, 王秉中, 丁帅, 龚志双. 基于反演场扩散消除的时间反演多目标成像技术. 物理学报, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [4] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [5] 王文娟, 童培庆. 广义Fibonacci时间准周期量子行走波包扩散的动力学特性. 物理学报, 2016, 65(16): 160501. doi: 10.7498/aps.65.160501
    [6] 吕俊伟, 迟铖, 于振涛, 毕波, 宋庆善. 磁梯度张量不变量的椭圆误差消除方法研究. 物理学报, 2015, 64(19): 190701. doi: 10.7498/aps.64.190701
    [7] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [8] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [9] 李震, 张锡文, 何枫. 基于速度梯度张量的四元分解对若干涡判据的评价. 物理学报, 2014, 63(5): 054704. doi: 10.7498/aps.63.054704
    [10] 李强, 普小云. 用毛细管成像法测量液相扩散系数——等折射率薄层测量方法. 物理学报, 2013, 62(9): 094206. doi: 10.7498/aps.62.094206
    [11] 许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉. 快速多极边界元法用于扩散光学断层成像研究. 物理学报, 2013, 62(10): 104204. doi: 10.7498/aps.62.104204
    [12] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究. 物理学报, 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [13] 石明珠, 许廷发, 梁炯, 李相民. 单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究. 物理学报, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [14] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法. 物理学报, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [15] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程. 物理学报, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [16] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论. 物理学报, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [17] 胡安, 蒋树声, 彭茹雯, 张春生, 冯端. 广义的一维Fibonacci结构. 物理学报, 1992, 41(1): 62-68. doi: 10.7498/aps.41.62
    [18] 夏蒙棼, 仇韵清. 静电波驱动的空间扩散. 物理学报, 1985, 34(3): 322-331. doi: 10.7498/aps.34.322
    [19] 张承福. 低频漂移波与赝经典扩散. 物理学报, 1980, 29(2): 214-224. doi: 10.7498/aps.29.214
    [20] 肖振喜, 张应. 低压含氢扩散云室. 物理学报, 1960, 16(2): 113-116. doi: 10.7498/aps.16.113
计量
  • 文章访问数:  5943
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-08
  • 修回日期:  2013-12-25
  • 刊出日期:  2014-02-05

/

返回文章
返回