搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁共振扩散张量成像中扩散敏感梯度磁场方向分布方案的研究进展

刘良友 高嵩 李莎 李兆同 夏一帆

引用本文:
Citation:

磁共振扩散张量成像中扩散敏感梯度磁场方向分布方案的研究进展

刘良友, 高嵩, 李莎, 李兆同, 夏一帆

Research progress of diffusion sensitive gradient field encoding schemes in magnetic resonance diffusion tensor imaging

Liu Liang-You, Gao Song, Li Sha, Li Zhao-Tong, Xia Yi-Fan
PDF
HTML
导出引用
  • 磁共振扩散张量成像可以定量无创研究人体内水分子在三维空间中的各向异性扩散规律, 进而获取重要的病理及生理信息. 为了得到水分子各向异性扩散信息, 需要按照一定的方案依次施加不同方向的扩散敏感梯度磁场, 测量水分子在这些方向上的扩散系数用以估算扩散张量. 扩散张量成像测量结果的准确程度受梯度磁场方向分布方案的影响, 本文对扩散敏感梯度磁场方向分布方案进行综述, 包括完全随机方案、启发式方案、规则多面体式方案和数值优化方案等, 分析这些方案的优势与局限性, 并提出需进一步研究的问题.
    Magnetic resonance imaging is a medical imaging technique in which the phenomenon of nuclear magnetic resonance is used. This technique is widely used in clinical and scientific research at present. The diffusion of water molecules is isotropic in a homogeneous medium, while it is anisotropic in the structure of human tissue. Magnetic resonance diffusion tensor imaging (DTI) is for studying the microscopic structure inside body by using the water molecules’ diffusion effect which will reduce the signal intensity of magnetic resonance. Besides, it can quantitatively study the anisotropy of water molecules in three-dimensional space, and thus acquiring important pathological and physiological information without invading in vivo. In order to obtain the accurate result of the anisotropic diffusion of water molecules, according to a certain scheme, it is necessary to sequentially use diffusion sensitive gradient (DSG) magnetic fields in different diffusion orientations to measure the diffusion coefficient of water molecules for estimating the diffusion tensor. The precision of estimating diffusion tensor is affected by the applied DSG encoding scheme, and it is usually necessary to use a large number of linearly independent and evenly spatial distributions of DSG magnetic fields in order to make the tensor measurement result more accurate. Diffusion spectroscopy imaging technique and high angular resolution diffusion imaging (HARDI) technique are proposed for more complex fiber bundles crossing in human tissue, one of which, HARDI, has higher requirement for the number and the direction distribution uniformity of DSGs. In this paper, the basic principle of DTI and the DSG encoding schemes are reviewed, which includes completely random scheme, heuristic scheme, regular polyhedral scheme, numerically optimized scheme, etc. For the above various schemes their respective advantages and limitations are analyzed. At present, the Golden Ratio method is to be used in a new spherical DSG encoding scheme which meets the requirements for HARDI and can offer more accurate tensor estimation results in face of the corruption of data sets encountered in clinical practice.
      通信作者: 高嵩, gaoss@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61671026)和北京市自然科学基金(批准号: 7202093)资助的课题
      Corresponding author: Gao Song, gaoss@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671026) and Beijing Natural Science Foundation (Grant No. 7202093)
    [1]

    Le Bihan D, Mangin J F, Poupon C, Clark C A, Pappata S, Molko N, Chabriat H 2001 J. Magn. Reson. Imaging 13 534Google Scholar

    [2]

    Basser P J, Mattiello J, LeBihan D 1994 Biophys. J. 66 259Google Scholar

    [3]

    Mattiello J, Basser P J, Lebihan D 1994 J. Magn. Reson., Ser. A 108 131Google Scholar

    [4]

    Alexander D C, Dyrby T B, Nilsson M, Zhang H 2019 NMR Biomed. 32 e3841Google Scholar

    [5]

    Novikov D S, Fieremans E, Jespersen S N, Kiselev V G 2019 NMR Biomed. 32 e3998Google Scholar

    [6]

    Tae W S, Ham B J, Pyun S B, Kang S H, Kim B J 2018 Clin. Neurol. 14 129Google Scholar

    [7]

    Okita G, Ohba T, Takamura T, Ebata S, Ueda R, Onishi H, Hori M 2018 Spine J. 8 268Google Scholar

    [8]

    Tuch D S, Weiskoff R M, Belliveau J W, Wedeen V J 1999 Proceedings of the 7 th Annual Meeting of ISMRM Philadelphia, USA, May 24−28, 1999 p321

    [9]

    Torrey H C 1956 Phys. Rev. 104 563Google Scholar

    [10]

    Stejskal E O, Tanner J E 1965 J. Chem. Phys. 42 288Google Scholar

    [11]

    O’Donnell L J, Westin C F 2011 Neurosurg. Clin. N. Am. 22 185Google Scholar

    [12]

    Le Bihan D 1991 Magn. Reson. Q. 7 1

    [13]

    Jones D K 2004 Magn. Reson. Med. 51 807Google Scholar

    [14]

    Hasan K M, Basser P J, Parker D L, Alexander A L 2001 Magn. Reson. 152 41Google Scholar

    [15]

    Westin C F, Maier S E, Mamata H, Nabavi A, Jolesz F A, Kikinis R 2002 Med. Image Anal. 6 93Google Scholar

    [16]

    Jonse D K, Knosche T R, Turner R 2013 NeuroImage 73 239Google Scholar

    [17]

    张首誉, 包尚联, 亢孝俭 2013 物理学报 62 208703

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703

    [18]

    Basser P J 1995 NMR Biomed. 8 333Google Scholar

    [19]

    Basser P J, Mattiello J, Le Bihan D 1994 J. Magn. Reson. Ser. B 103 247Google Scholar

    [20]

    Jones D K, Horsfield M A, Simmons A 1999 Magn. Reson. Med. 42 515Google Scholar

    [21]

    Hasan K M, Parker D L, Alexander A L 2001 J. Magn. Reson. Imaging 13 769Google Scholar

    [22]

    Dubois J, Poupon C, Lethimonnier F, Le Bihan D 2006 Magn. Reson. Mater. Phys., Biol. Med. 19 134Google Scholar

    [23]

    Zhan L, Leow A.D, Jahanshad N, Chiang M C, Barysheva M, Lee A D, Toga A W, McMahon K L, Zubicaray G I, Wright M J, Thompson P M 2010 NeuroImage 47 1357Google Scholar

    [24]

    高嵩, 朱艳春, 李硕, 包尚联 2014 物理学报 63 048704Google Scholar

    Gao S, Zhu Y C, Li S, Bao S L 2014 Acta Phys. Sin. 63 048704Google Scholar

    [25]

    Alderman D W, Sherwood M, Grant D 1990 J. Magn. Reson. 86 60Google Scholar

    [26]

    Basser P J, Pierpaoli C 1998 Magn. Reson. Med. 39 928Google Scholar

    [27]

    Conturo T E, McKinstry R C, Akbudak E, Robinson B H 1996 Magn. Reson. Med. 35 399Google Scholar

    [28]

    Shimony J S, McKinstry R C, Akbudak E, Aronovitz J A, Snyder A Z, Lori N F, Conturo T E 1999 Radiology 212 770Google Scholar

    [29]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon Press) pp150−169

    [30]

    Skare S, Nordell B 1999 Proceedings of the 7th Annual Meeting of ISMRM Philadelphia, USA, May 24−28, 1999 p322

    [31]

    Kingsley P B 2006 Concepts Magn. Reson. A 28 123Google Scholar

    [32]

    Skare S, Hedehus M, Moseley M E, Li T Q 2000 J. Magn. Reson. 147 340Google Scholar

    [33]

    Batchelor P G, Atkinson D, Hill D L G, Calamante F, Connelly A 2003 Magn. Reson. Med. 49 1143Google Scholar

    [34]

    Papadakis N G, Xing D, Houston G C, Smith J M, Smith M I, James M F, Carpenter T A 1999 Magn. Reson. Imaging 17 881Google Scholar

    [35]

    Hasan K M, Parker D L, Alexander A L 2002 Image Anal. Stereol. 21 87Google Scholar

    [36]

    Akkerman E M 2003 Magn. Reson. Med. 49 599Google Scholar

    [37]

    Hasan K M, Narayana P A 2003 Magn. Reson. Med. 50 589Google Scholar

    [38]

    Tegmark M 1996 Astrophys. J. 470 L81Google Scholar

    [39]

    Sibley T Q 1998 The Geometric Viewpoint (New York: Addison-Wesley) pp41−45

    [40]

    Stirnberg R, Stöcker T, Shah N J 2009 Proc. Intl. Soc. Mag. Reson. Med. 17 3574

    [41]

    Wong S T S, Roos M S 1994 Magn. Reson. Med. 32 778Google Scholar

    [42]

    Jones D K, Leemans A 2011 Magnetic Resonance Neuroimaging (New York: Humana Press) pp127−144

    [43]

    Cook P A, Symms M, Boulby P A, Alexander D C 2007 J. Magn. Reson. Imaging 25 1051Google Scholar

    [44]

    Alipoor M, Gu I Y 2015 IEEE 12th International Symposium on Biomedical Imaging New York, USA April 16−19, 2015 p959

    [45]

    Dubois J, Cointepas Y, Poupon C, Lethimonnier F, Le Bihan D 2004 Proceedings of the 12th Annual Meeting of ISMRM Kyoto, Japan, May 15−21, 2004 p443

    [46]

    Cook P A, Boulby P A, Symms M R, Alexander D C 2005 Proceedings of the 13th Annual Meeting of ISMRM Miami, USA, May 7−13, 2005 p1303

    [47]

    Cook P A, Bai Y, Nedjati-Gilani S K K S, Seunarine K K, Hall M G, Parker G J, Alexander D C 2006 Proceedings 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine Seattle, Washington, USA, May 6−12, 2006 p2759

    [48]

    Farquharson S, Tournier J D 2016 Diffusion Tensor Imaging (New York: Springer-Verlag) pp383−406

    [49]

    Varentsova A, Zhang S, Arfanakis K 2014 NeuroImage 91 177Google Scholar

    [50]

    Sherbaf F G, Same K, Aarabi M H 2018 Acta Neurol. Belg. 118 573Google Scholar

    [51]

    Descoteaux M 1999 High angular resolution diffusion imaging (HARDI) (John Wiley and Sons, Inc.: Wiley Encyclopedia of Electrical and Electronics Engineering) p1

  • 图 1  Stejskal-Tanner序列, 其中两个同等的DSG脉冲置于180°RF脉冲两侧, 强度为G, 宽度为δ, 时间间隔为Δ

    Fig. 1.  Stejskal-Tanner Scheme: Two diffusion sensitive gradients inserted before and after 180° RF refocusing pulse. G, amplitude; δ, duration of the DSG; Δ, time between the two sensitive gradient lobes.

    图 2  随机分布60个方向DSG方向分布方案

    Fig. 2.  DSG encoding scheme with random distribution in 60 directions.

    图 3  完全启发式13个方向DSG方向分布方案

    Fig. 3.  DSG encoding scheme with heuristic distribution in 13 directions.

    图 4  二十面体31个方向DSG方向分布方案

    Fig. 4.  DSG encoding scheme with icosahedron distribution in 31 directions.

    图 5  DISCOBALL 30个方向DSG方向分布方案

    Fig. 5.  DSG encoding scheme with DISCOBALL distribution in 30 directions.

    图 6  球面螺旋分布60个方向DSG方向分布方案

    Fig. 6.  DSG encoding scheme with spherical spiral distribution in 60 directions.

    图 7  两种Jones 60个方向DSG方向分布方案 (a) Jones方案; (b)排序的Jones方案

    Fig. 7.  DSG encoding scheme with Jones (a) and Ordered Jones (b) in 60 directions

  • [1]

    Le Bihan D, Mangin J F, Poupon C, Clark C A, Pappata S, Molko N, Chabriat H 2001 J. Magn. Reson. Imaging 13 534Google Scholar

    [2]

    Basser P J, Mattiello J, LeBihan D 1994 Biophys. J. 66 259Google Scholar

    [3]

    Mattiello J, Basser P J, Lebihan D 1994 J. Magn. Reson., Ser. A 108 131Google Scholar

    [4]

    Alexander D C, Dyrby T B, Nilsson M, Zhang H 2019 NMR Biomed. 32 e3841Google Scholar

    [5]

    Novikov D S, Fieremans E, Jespersen S N, Kiselev V G 2019 NMR Biomed. 32 e3998Google Scholar

    [6]

    Tae W S, Ham B J, Pyun S B, Kang S H, Kim B J 2018 Clin. Neurol. 14 129Google Scholar

    [7]

    Okita G, Ohba T, Takamura T, Ebata S, Ueda R, Onishi H, Hori M 2018 Spine J. 8 268Google Scholar

    [8]

    Tuch D S, Weiskoff R M, Belliveau J W, Wedeen V J 1999 Proceedings of the 7 th Annual Meeting of ISMRM Philadelphia, USA, May 24−28, 1999 p321

    [9]

    Torrey H C 1956 Phys. Rev. 104 563Google Scholar

    [10]

    Stejskal E O, Tanner J E 1965 J. Chem. Phys. 42 288Google Scholar

    [11]

    O’Donnell L J, Westin C F 2011 Neurosurg. Clin. N. Am. 22 185Google Scholar

    [12]

    Le Bihan D 1991 Magn. Reson. Q. 7 1

    [13]

    Jones D K 2004 Magn. Reson. Med. 51 807Google Scholar

    [14]

    Hasan K M, Basser P J, Parker D L, Alexander A L 2001 Magn. Reson. 152 41Google Scholar

    [15]

    Westin C F, Maier S E, Mamata H, Nabavi A, Jolesz F A, Kikinis R 2002 Med. Image Anal. 6 93Google Scholar

    [16]

    Jonse D K, Knosche T R, Turner R 2013 NeuroImage 73 239Google Scholar

    [17]

    张首誉, 包尚联, 亢孝俭 2013 物理学报 62 208703

    Zhang S Y, Bao S L, Kang X J 2013 Acta Phys. Sin. 62 208703

    [18]

    Basser P J 1995 NMR Biomed. 8 333Google Scholar

    [19]

    Basser P J, Mattiello J, Le Bihan D 1994 J. Magn. Reson. Ser. B 103 247Google Scholar

    [20]

    Jones D K, Horsfield M A, Simmons A 1999 Magn. Reson. Med. 42 515Google Scholar

    [21]

    Hasan K M, Parker D L, Alexander A L 2001 J. Magn. Reson. Imaging 13 769Google Scholar

    [22]

    Dubois J, Poupon C, Lethimonnier F, Le Bihan D 2006 Magn. Reson. Mater. Phys., Biol. Med. 19 134Google Scholar

    [23]

    Zhan L, Leow A.D, Jahanshad N, Chiang M C, Barysheva M, Lee A D, Toga A W, McMahon K L, Zubicaray G I, Wright M J, Thompson P M 2010 NeuroImage 47 1357Google Scholar

    [24]

    高嵩, 朱艳春, 李硕, 包尚联 2014 物理学报 63 048704Google Scholar

    Gao S, Zhu Y C, Li S, Bao S L 2014 Acta Phys. Sin. 63 048704Google Scholar

    [25]

    Alderman D W, Sherwood M, Grant D 1990 J. Magn. Reson. 86 60Google Scholar

    [26]

    Basser P J, Pierpaoli C 1998 Magn. Reson. Med. 39 928Google Scholar

    [27]

    Conturo T E, McKinstry R C, Akbudak E, Robinson B H 1996 Magn. Reson. Med. 35 399Google Scholar

    [28]

    Shimony J S, McKinstry R C, Akbudak E, Aronovitz J A, Snyder A Z, Lori N F, Conturo T E 1999 Radiology 212 770Google Scholar

    [29]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon Press) pp150−169

    [30]

    Skare S, Nordell B 1999 Proceedings of the 7th Annual Meeting of ISMRM Philadelphia, USA, May 24−28, 1999 p322

    [31]

    Kingsley P B 2006 Concepts Magn. Reson. A 28 123Google Scholar

    [32]

    Skare S, Hedehus M, Moseley M E, Li T Q 2000 J. Magn. Reson. 147 340Google Scholar

    [33]

    Batchelor P G, Atkinson D, Hill D L G, Calamante F, Connelly A 2003 Magn. Reson. Med. 49 1143Google Scholar

    [34]

    Papadakis N G, Xing D, Houston G C, Smith J M, Smith M I, James M F, Carpenter T A 1999 Magn. Reson. Imaging 17 881Google Scholar

    [35]

    Hasan K M, Parker D L, Alexander A L 2002 Image Anal. Stereol. 21 87Google Scholar

    [36]

    Akkerman E M 2003 Magn. Reson. Med. 49 599Google Scholar

    [37]

    Hasan K M, Narayana P A 2003 Magn. Reson. Med. 50 589Google Scholar

    [38]

    Tegmark M 1996 Astrophys. J. 470 L81Google Scholar

    [39]

    Sibley T Q 1998 The Geometric Viewpoint (New York: Addison-Wesley) pp41−45

    [40]

    Stirnberg R, Stöcker T, Shah N J 2009 Proc. Intl. Soc. Mag. Reson. Med. 17 3574

    [41]

    Wong S T S, Roos M S 1994 Magn. Reson. Med. 32 778Google Scholar

    [42]

    Jones D K, Leemans A 2011 Magnetic Resonance Neuroimaging (New York: Humana Press) pp127−144

    [43]

    Cook P A, Symms M, Boulby P A, Alexander D C 2007 J. Magn. Reson. Imaging 25 1051Google Scholar

    [44]

    Alipoor M, Gu I Y 2015 IEEE 12th International Symposium on Biomedical Imaging New York, USA April 16−19, 2015 p959

    [45]

    Dubois J, Cointepas Y, Poupon C, Lethimonnier F, Le Bihan D 2004 Proceedings of the 12th Annual Meeting of ISMRM Kyoto, Japan, May 15−21, 2004 p443

    [46]

    Cook P A, Boulby P A, Symms M R, Alexander D C 2005 Proceedings of the 13th Annual Meeting of ISMRM Miami, USA, May 7−13, 2005 p1303

    [47]

    Cook P A, Bai Y, Nedjati-Gilani S K K S, Seunarine K K, Hall M G, Parker G J, Alexander D C 2006 Proceedings 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine Seattle, Washington, USA, May 6−12, 2006 p2759

    [48]

    Farquharson S, Tournier J D 2016 Diffusion Tensor Imaging (New York: Springer-Verlag) pp383−406

    [49]

    Varentsova A, Zhang S, Arfanakis K 2014 NeuroImage 91 177Google Scholar

    [50]

    Sherbaf F G, Same K, Aarabi M H 2018 Acta Neurol. Belg. 118 573Google Scholar

    [51]

    Descoteaux M 1999 High angular resolution diffusion imaging (HARDI) (John Wiley and Sons, Inc.: Wiley Encyclopedia of Electrical and Electronics Engineering) p1

  • [1] 谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运. 一种K分布强湍流下的测量设备无关量子密钥分发方案. 物理学报, 2019, 68(9): 090302. doi: 10.7498/aps.68.20182130
    [2] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [3] 臧锐, 王秉中, 丁帅, 龚志双. 基于反演场扩散消除的时间反演多目标成像技术. 物理学报, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [4] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [5] 曹超, 王胜, 唐科, 尹伟, 吴洋. 极化中子照相磁场量化技术方案比较与分析. 物理学报, 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [6] 高嵩, 朱艳春, 李硕, 包尚联. 核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案. 物理学报, 2014, 63(4): 048704. doi: 10.7498/aps.63.048704
    [7] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [8] 许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉. 快速多极边界元法用于扩散光学断层成像研究. 物理学报, 2013, 62(10): 104204. doi: 10.7498/aps.62.104204
    [9] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究. 物理学报, 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [10] 石明珠, 许廷发, 梁炯, 李相民. 单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究. 物理学报, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [11] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法. 物理学报, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [12] 郝世峰, 崔晓鹏. 平流扩散差分方程的新正定性重整化方案设计和试验. 物理学报, 2012, 61(3): 039204. doi: 10.7498/aps.61.039204
    [13] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论. 物理学报, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [14] 仇韵清, 夏蒙棼. 随机磁场对静电波驱动的速度扩散的影响. 物理学报, 1984, 33(5): 678-683. doi: 10.7498/aps.33.678
    [15] 张承福, 吴惟敏. 随机磁场中的双极电场与双极扩散. 物理学报, 1981, 30(3): 333-343. doi: 10.7498/aps.30.333
    [16] 曾庆城. 硅中电离杂质扩散分布的显微观测. 物理学报, 1981, 30(2): 249-253. doi: 10.7498/aps.30.249
    [17] 夏蒙棼. 随机磁场中的反常扩散效应. 物理学报, 1981, 30(9): 1275-1278. doi: 10.7498/aps.30.1275
    [18] 程月英, 陈景章, 陈良辰. 超高压下生长多晶金刚石中触媒金属Ni的扩散及分布. 物理学报, 1980, 29(11): 1507-1512. doi: 10.7498/aps.29.1507
    [19] 陆全康. 关于等离子体横越磁场的非经典扩散. 物理学报, 1978, 27(2): 229-232. doi: 10.7498/aps.27.229
    [20] 林绪伦, 黄敞, 徐炳华. 用四探针及阳极氧化方法测量硅中扩散层杂质分布. 物理学报, 1964, 20(7): 643-653. doi: 10.7498/aps.20.643
计量
  • 文章访问数:  6929
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-10-28
  • 刊出日期:  2020-02-05

/

返回文章
返回