搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁梯度张量不变量的椭圆误差消除方法研究

吕俊伟 迟铖 于振涛 毕波 宋庆善

引用本文:
Citation:

磁梯度张量不变量的椭圆误差消除方法研究

吕俊伟, 迟铖, 于振涛, 毕波, 宋庆善

Research on the asphericity error elimination of the invariant of magnetic gradient tensor

Lü Jun-Wei, Chi Cheng, Yu Zhen-Tao, Bi Bo, Song Qing-Shan
PDF
导出引用
  • 基于磁梯度张量不变量定位方法, 可以实现对目标的单点实时定位, 且定位目标不限于静止目标, 这一方法目前得到了人们的广泛关注, 但该方法由于存在着椭圆系数导致目标定位误差较大的问题. 针对该问题, 提出了一种基于正六面体磁梯度张量测量系统的单点实时定位改进方法, 该方法通过消除原定位方法中不变量存在的椭圆系数, 从而克服椭圆误差对定位精度的影响. 具体做法是通过求解测量系统中正六面体的六个平面中心点处磁梯度张量的特征值, 并把这些特征值按照一定关系进行组合来消除椭圆系数, 来获得六个平面的新不变量, 再对这些新不变量求其梯度值, 根据这些梯度值对目标进行定位, 这样该定位方法可以有效的克服椭圆误差, 可对目标进行单点实时定位. 对改进定位方法进行了仿真实验分析, 结果表明改进方法可以实现目标的单点实时定位, 定位的平均相对误差较现有方法减少10.9%. 改进方法对所搭载平台的机动性要求较低, 其平台可做直线或曲线运动对目标实现单点实时定位.
    Real-time, point-by-point localization of magnetic targets such as ferrous unexploded ordnance can be achieved by the cube magnetic gradiometer system designed by the Naval Surface Warfare Center. The localization method uses the Frobenius norm of the magnetic gradient tensor to calculate the location of the magnetic target. This method assumes that the potential field of the Frobenius norm of the magnetic gradient tensor is a prefect sphere. But the Frobenius norm of the magnetic gradient tensor has an asphericity parameter, and its potential field is an ellipsoid, which can cause asphericity error. Since the current localization method can be affected seriously by the asphericity error, an improved method is proposed in this paper to eliminate the asphericity error. The improved method is based on a new invariant, which does not contain asphericity parameter. The new invariant can be obtained by the combination of the Frobenius norm and eigenvalues of the magnetic gradient tensor. In detail the procedure is as follows: first, the magnetic gradient tensor of the center point of the regular hexahedron's six planes can be measured by the cube magnetic gradiometer system, then these eigenvalues can be calculated and combined according to a certain relationship to eliminate the asphericity parameter, then the new invariants of the six planes can be obtained, and the spatial gradient of the new invariant can be calculated from the six new invariants, then the localization of the magnetic target can be calculated from the spatial gradient of the new invariant. This improved method can overcome the asphericity error effectively, and it can be used for real-time, point-by-point localization and detection of unexploded ordnance. Simulation experiments show that the localization error of the improved method is much smaller than that of the original method, the average relative error can be reduced by 10.9%. The improved method can be deployed on the highly maneuverable platform. The platform motion will not be constrained, and the improved method will be made more effectively in detection and localization of the magnetic targets. Thus the improved method can be widely applied in naval mines localization, mineral exploration, ferrous resources exploration, moving magnetic target tracking, and other fields.
      通信作者: 迟铖, cheng.chihhu@163.com
    • 基金项目: 国家高技术研究发展计划(批准号: 2010AAJ211)资助的课题.
      Corresponding author: Chi Cheng, cheng.chihhu@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2010AAJ211).
    [1]

    Nara T, Suzuki S, Ando S 2006 IEEE Transactions on Magnetics 42 3291

    [2]

    Yu Z T, L J W, Fan L H, Zhang B T 2014 Systems Engineering and Electronics 36 1250 (in Chinese) [于振涛, 吕俊伟, 樊利恒, 张本涛 2014 系统工程与电子技术 36 1250]

    [3]

    Young J A, Clark D A 2010 International Conference on Electromagnetics in Advanced Applicatioons Sydney, Australia, September 20-24, 2010 p701

    [4]

    Yu Z T, L J W, Bi B, Zhou J 2014 Acta Phys. Sin. 63 110702(in Chinese) [于振涛, 吕俊伟, 毕波, 周静 2014 物理学报 63 110702]

    [5]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [6]

    Wiegert R, Lee K H, Oeschger J 2008 IEEE Oceans 2008 Conference Proceedings Quebec City, Canada, September 15-18, 2008 p1

    [7]

    Huang K Z, Xue M Z, Lu M W 2003 Tensor Analysis(Beijing: Tsinghua University Press) p55 (in Chinese) [黄克智, 薛明德, 陆明万 张量分析 2003 张量分析(北京: 清华大学出版社) 第55页]

    [8]

    Wilson H 1985 Canada Technical Memorandum 8513

    [9]

    Clark D A 2012 22th International Geophysical Conference and ExhibitionBrisbane, Australia, February 26-29, 2012 p1

    [10]

    Wiegert R, Oeschger J 2006 IEEE Oceans 2006 Conference Proceedings Boston, Massachusetts, September 18-21, 2006 p1

    [11]

    Wiegert R 2009 Proc. SPIE 7303Florida, USA, May 04, 2009 p1

    [12]

    Chen J F, Zhang Q, Pan M C, Weng F B, Chen D X, Pang H F 2012 Chin. J. Sens. Actuators 25 1088 (in Chinese) [陈谨飞, 张琦, 潘孟春, 翁飞兵, 陈棣湘, 庞鸿锋 2012 传感技术学报 25 1088]

    [13]

    Sui Y Y, Li G, Wang S L 2012 IEEE Transactions on Magnetics 48 4701

  • [1]

    Nara T, Suzuki S, Ando S 2006 IEEE Transactions on Magnetics 42 3291

    [2]

    Yu Z T, L J W, Fan L H, Zhang B T 2014 Systems Engineering and Electronics 36 1250 (in Chinese) [于振涛, 吕俊伟, 樊利恒, 张本涛 2014 系统工程与电子技术 36 1250]

    [3]

    Young J A, Clark D A 2010 International Conference on Electromagnetics in Advanced Applicatioons Sydney, Australia, September 20-24, 2010 p701

    [4]

    Yu Z T, L J W, Bi B, Zhou J 2014 Acta Phys. Sin. 63 110702(in Chinese) [于振涛, 吕俊伟, 毕波, 周静 2014 物理学报 63 110702]

    [5]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [6]

    Wiegert R, Lee K H, Oeschger J 2008 IEEE Oceans 2008 Conference Proceedings Quebec City, Canada, September 15-18, 2008 p1

    [7]

    Huang K Z, Xue M Z, Lu M W 2003 Tensor Analysis(Beijing: Tsinghua University Press) p55 (in Chinese) [黄克智, 薛明德, 陆明万 张量分析 2003 张量分析(北京: 清华大学出版社) 第55页]

    [8]

    Wilson H 1985 Canada Technical Memorandum 8513

    [9]

    Clark D A 2012 22th International Geophysical Conference and ExhibitionBrisbane, Australia, February 26-29, 2012 p1

    [10]

    Wiegert R, Oeschger J 2006 IEEE Oceans 2006 Conference Proceedings Boston, Massachusetts, September 18-21, 2006 p1

    [11]

    Wiegert R 2009 Proc. SPIE 7303Florida, USA, May 04, 2009 p1

    [12]

    Chen J F, Zhang Q, Pan M C, Weng F B, Chen D X, Pang H F 2012 Chin. J. Sens. Actuators 25 1088 (in Chinese) [陈谨飞, 张琦, 潘孟春, 翁飞兵, 陈棣湘, 庞鸿锋 2012 传感技术学报 25 1088]

    [13]

    Sui Y Y, Li G, Wang S L 2012 IEEE Transactions on Magnetics 48 4701

  • [1] 徐鑫鑫, 张毅. 分数阶非保守Lagrange系统的一类新型绝热不变量. 物理学报, 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [2] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [3] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法. 物理学报, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [4] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [5] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [6] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [7] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [8] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量. 物理学报, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [9] 程桂平, 郑 俊, 邓文武, 李高翔. 反馈法定位两原子之间的相对位置. 物理学报, 2008, 57(1): 212-218. doi: 10.7498/aps.57.212
    [10] 罗绍凯. Lagrange系统一类新型的非Noether绝热不变量——Lutzky型绝热不变量. 物理学报, 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [11] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统. 物理学报, 2007, 56(10): 5903-5908. doi: 10.7498/aps.56.5903
    [12] 张 毅. Birkhoff系统的一类新型绝热不变量. 物理学报, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [13] 马中骐, 许伯威. 精确的量子化条件和不变量. 物理学报, 2006, 55(4): 1571-1579. doi: 10.7498/aps.55.1571
    [14] 徐海磊, 沈建其, 陈一新. 双阱结构含时量子输运的微扰论及输运方程. 物理学报, 2003, 52(6): 1372-1378. doi: 10.7498/aps.52.1372
    [15] 黄博文. 受与速度平方成正比的力的变频率谐振子. 物理学报, 2003, 52(2): 271-275. doi: 10.7498/aps.52.271
    [16] 张 毅, 梅凤翔. 广义经典力学系统对称性的摄动与绝热不变量. 物理学报, 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [17] 沈建其, 朱红毅, 施申蕾. 单模光子在光纤中运动的极化及几何相因子. 物理学报, 2002, 51(3): 536-540. doi: 10.7498/aps.51.536
    [18] 张毅. 约束哈密顿系统在相空间中的精确不变量与绝热不变量. 物理学报, 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [19] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量. 物理学报, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
    [20] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理. 物理学报, 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
计量
  • 文章访问数:  7585
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-01
  • 修回日期:  2015-05-25
  • 刊出日期:  2015-10-05

/

返回文章
返回