-
本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors, GFET)开展了基于10 keV- X射线的总剂量效应研究. 结果表明, 随累积剂量的增大, 不同结构GFET的狄拉克电压VDirac和载流子迁移率μ不断退化; 相比于背栅型GFET, 顶栅型GFET的辐射损伤更加严重; 尺寸对GFET器件的总剂量效应决定于器件结构; 200 μm×200 μm尺寸的顶栅型GFET损伤最严重, 而背栅型GFET是50 μm×50 μm尺寸的器件损伤最严重. 研究表明: 对于顶栅型GFET, 辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是VDirac和μ降低的主要原因. 背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响, 还受到石墨烯表面的氧吸附的影响. 在此基础上, 结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真. 相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.In this paper, the total dose effects of graphene field-effect transistors (GFETs) with different structures and sizes are studied. The irradiation experiments are carried out by using the 10-keV X-ray irradiation platform with a dose rate of 200 rad(Si)/s. Positive gate bias (VG = +1 V, VD = VS = 0 V) is used during irradiation. Using a semiconductor parameter analyzer, the transfer characteristic curves of top-gate GFET and back-gate GFET are obtained before and after irradiation. At the same time, the degradation condition of the dirac voltage VDirac and the carrier mobility μ are extracted from the transfer characteristic curve. The experimental results demonstrate that VDirac and carrier mobility μ degrade with dose increasing. The depletion of VDirac and carrier mobility μ are caused by the oxide trap charge generated in the gate oxygen layer during X-ray irradiation. Compared with the back-gate GFETs, the top-gate GFETs show more severely degrade VDirac and carrier mobility, therefore top-gate GFET is more sensitive to X-ray radiation at the same cumulative dose than back-gate GFET. The analysis shows that the degradation of top-gate GFET is mainly caused by the oxide trap charge. And in contrast to top-gate GFET, oxygen adsorption contributes to the irradiation process of back-gate GFET, which somewhat mitigates the effect of radiation damage. Furthermore, a comparison of electrical property deterioration of GFETs of varying sizes between the pre-irradiation and the post-irradiation is made. The back-gate GFET, which has a size of 50 μm×50 μm, and the top-gate GFET, which has a size of 200 μm×200 μm, are damaged most seriously. In the case of the top-gate GFET, the larger the radiation area, the more the generated oxide trap charges are and the more serious the damage. In contrast, the back-gate GFET has a larger oxygen adsorption area during irradiation and a more noticeable oxygen adsorption effect, which partially offsets the damage produced by irradiation. Finally, the oxide trap charge mechanism is simulated by using TCAD simulation tool. The TCAD simulation reveals that the trap charge at the interface between Al2O3 and graphene is mainly responsible for the degradation of top-gate GFET property, significantly affecting the investigation of the radiation effect and radiation reinforcement of GFETs.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar
[3] Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar
[4] Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar
[5] Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar
[6] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar
Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar
[7] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar
Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar
[8] Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar
[9] Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar
[10] Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar
[11] 冯婷婷 2014 博士学位论文 (北京: 清华大学)
Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University
[12] Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar
[13] LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar
[14] Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar
[15] Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar
[16] Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar
[17] Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar
[18] Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar
[19] Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar
[20] Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar
[21] Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar
[22] Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar
[23] Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar
[24] Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar
[25] 舒焕 2023 硕士学位论文 (北京: 北方工业大学)
Shu H 2023 M. S. Thesis (Beijing: North China University of Technology
[26] Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar
[27] An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar
[28] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[29] Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar
-
表 1 样品信息及偏置条件
Table 1. Sample information and bias conditions.
器件结构 器件尺寸 偏置条件 顶栅型GFET 50 μm×50 μm 正栅极偏置
(VG = +1 V,
VD = VS = 0 V)100 μm×100 μm 200 μm×200 μm 背栅型GFET 50 μm×50 μm 正栅极偏置
(VG = +1 V,
VD = VS = 0 V)100 μm×100 μm 200 μm×200 μm 表 2 辐照前后不同尺寸GFET的VDirac偏移量ΔVDirac和载流子迁移率偏移量Δμ
Table 2. VDirac offsets ΔVDirac and carrier mobility offsets Δμ of GFETs of different sizes before and after irradiation.
尺寸 顶栅型GFET 背栅型GFET ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1) ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1) 50 μm×50 μm 2.05 194.2 168.1 0.46 133.3 324.0 100 μm×100 μm 2.18 78.3 98.5 0.07 26.1 252.1 200 μm×200 μm 2.68 243.5 40.6 0.24 69.6 92.8 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar
[3] Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar
[4] Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar
[5] Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar
[6] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar
Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar
[7] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar
Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar
[8] Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar
[9] Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar
[10] Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar
[11] 冯婷婷 2014 博士学位论文 (北京: 清华大学)
Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University
[12] Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar
[13] LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar
[14] Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar
[15] Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar
[16] Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar
[17] Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar
[18] Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar
[19] Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar
[20] Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar
[21] Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar
[22] Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar
[23] Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar
[24] Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar
[25] 舒焕 2023 硕士学位论文 (北京: 北方工业大学)
Shu H 2023 M. S. Thesis (Beijing: North China University of Technology
[26] Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar
[27] An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar
[28] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[29] Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar
计量
- 文章访问数: 2700
- PDF下载量: 108
- 被引次数: 0