搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯场效应晶体管的X射线总剂量效应

李济芳 郭红霞 马武英 宋宏甲 钟向丽 李洋帆 白如雪 卢小杰 张凤祁

引用本文:
Citation:

石墨烯场效应晶体管的X射线总剂量效应

李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁

Total X-ray dose effect on graphene field effect transistor

Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi
PDF
HTML
导出引用
  • 本文针对不同结构、尺寸的石墨烯场效应晶体管(graphene field effect transistors, GFET)开展了基于10 keV- X射线的总剂量效应研究. 结果表明, 随累积剂量的增大, 不同结构GFET的狄拉克电压VDirac和载流子迁移率μ不断退化; 相比于背栅型GFET, 顶栅型GFET的辐射损伤更加严重; 尺寸对GFET器件的总剂量效应决定于器件结构; 200 μm×200 μm尺寸的顶栅型GFET损伤最严重, 而背栅型GFET是50 μm×50 μm尺寸的器件损伤最严重. 研究表明: 对于顶栅型GFET, 辐照过程中在栅氧层中形成的氧化物陷阱电荷的积累是VDiracμ降低的主要原因. 背栅型GFET不仅受到辐射在栅氧化层中产生的陷阱电荷的影响, 还受到石墨烯表面的氧吸附的影响. 在此基础上, 结合TCAD仿真工具实现了顶栅器件氧化层中辐射产生的氧化物陷阱电荷对器件辐射响应规律的仿真. 相关研究结果对于石墨烯器件的抗辐照加固研究具有重大意义.
    In this paper, the total dose effects of graphene field-effect transistors (GFETs) with different structures and sizes are studied. The irradiation experiments are carried out by using the 10-keV X-ray irradiation platform with a dose rate of 200 rad(Si)/s. Positive gate bias (VG = +1 V, VD = VS = 0 V) is used during irradiation. Using a semiconductor parameter analyzer, the transfer characteristic curves of top-gate GFET and back-gate GFET are obtained before and after irradiation. At the same time, the degradation condition of the dirac voltage VDirac and the carrier mobility μ are extracted from the transfer characteristic curve. The experimental results demonstrate that VDirac and carrier mobility μ degrade with dose increasing. The depletion of VDirac and carrier mobility μ are caused by the oxide trap charge generated in the gate oxygen layer during X-ray irradiation. Compared with the back-gate GFETs, the top-gate GFETs show more severely degrade VDirac and carrier mobility, therefore top-gate GFET is more sensitive to X-ray radiation at the same cumulative dose than back-gate GFET. The analysis shows that the degradation of top-gate GFET is mainly caused by the oxide trap charge. And in contrast to top-gate GFET, oxygen adsorption contributes to the irradiation process of back-gate GFET, which somewhat mitigates the effect of radiation damage. Furthermore, a comparison of electrical property deterioration of GFETs of varying sizes between the pre-irradiation and the post-irradiation is made. The back-gate GFET, which has a size of 50 μm×50 μm, and the top-gate GFET, which has a size of 200 μm×200 μm, are damaged most seriously. In the case of the top-gate GFET, the larger the radiation area, the more the generated oxide trap charges are and the more serious the damage. In contrast, the back-gate GFET has a larger oxygen adsorption area during irradiation and a more noticeable oxygen adsorption effect, which partially offsets the damage produced by irradiation. Finally, the oxide trap charge mechanism is simulated by using TCAD simulation tool. The TCAD simulation reveals that the trap charge at the interface between Al2O3 and graphene is mainly responsible for the degradation of top-gate GFET property, significantly affecting the investigation of the radiation effect and radiation reinforcement of GFETs.
      通信作者: 郭红霞, guohongxia@nint.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 12275230, 12027813)资助的课题.
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275230, 12027813).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar

    [3]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar

    [4]

    Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar

    [5]

    Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar

    [6]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [7]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [8]

    Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar

    [9]

    Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar

    [10]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [11]

    冯婷婷 2014 博士学位论文 (北京: 清华大学)

    Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University

    [12]

    Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar

    [13]

    LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar

    [14]

    Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar

    [15]

    Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar

    [16]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [17]

    Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar

    [18]

    Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [19]

    Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar

    [20]

    Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [21]

    Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar

    [22]

    Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar

    [23]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [24]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [25]

    舒焕 2023 硕士学位论文 (北京: 北方工业大学)

    Shu H 2023 M. S. Thesis (Beijing: North China University of Technology

    [26]

    Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar

    [27]

    An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar

    [28]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [29]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar

  • 图 1  器件结构示意图 (a)顶栅型GFET; (b)背栅型GFET

    Fig. 1.  Device structure diagram: (a) Top-gate GFET; (b) back-gate GFET.

    图 2  辐照前后顶栅型GFET的转移特性曲线和输出特性曲线

    Fig. 2.  Transfer characteristic curve and output characteristic curve of top-gate GFET before and after irradiation.

    图 3  VDirac随辐射累积剂量的变化趋势 (a) 顶栅型GFET; (b) 背栅型GFET

    Fig. 3.  The variations of VDirac with cumulative dose: (a) Top-gate GFET; (b) back-gate GFET.

    图 4  载流子迁移率随辐射累积剂量的变化趋势 (a)顶栅型GFET; (b)背栅型GFET

    Fig. 4.  The variations of μ with cumulative dose: (a) Top-gate GFET; (b) back-gate GFET.

    图 5  辐照前后转移特性曲线的变化趋势 (a)顶栅型GFET; (b)背栅型GFET

    Fig. 5.  Transfer characteristic curve of GFET before and after irradiation: (a) Top-gate GFET; (b) back-gate GFET.

    图 6  固定不同数目的陷阱缺陷的转移特性曲线

    Fig. 6.  Transfer characteristic curve after fixing different number of trap defects.

    表 1  样品信息及偏置条件

    Table 1.  Sample information and bias conditions.

    器件结构 器件尺寸 偏置条件
    顶栅型GFET 50 μm×50 μm 正栅极偏置
    (VG = +1 V,
    VD = VS = 0 V)
    100 μm×100 μm
    200 μm×200 μm
    背栅型GFET 50 μm×50 μm 正栅极偏置
    (VG = +1 V,
    VD = VS = 0 V)
    100 μm×100 μm
    200 μm×200 μm
    下载: 导出CSV

    表 2  辐照前后不同尺寸GFET的VDirac偏移量ΔVDirac和载流子迁移率偏移量Δμ

    Table 2.  VDirac offsets ΔVDirac and carrier mobility offsets Δμ of GFETs of different sizes before and after irradiation.

    尺寸 顶栅型GFET 背栅型GFET
    ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1) ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1)
    50 μm×50 μm 2.05 194.2 168.1 0.46 133.3 324.0
    100 μm×100 μm 2.18 78.3 98.5 0.07 26.1 252.1
    200 μm×200 μm 2.68 243.5 40.6 0.24 69.6 92.8
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar

    [3]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar

    [4]

    Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar

    [5]

    Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar

    [6]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [7]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [8]

    Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar

    [9]

    Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar

    [10]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [11]

    冯婷婷 2014 博士学位论文 (北京: 清华大学)

    Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University

    [12]

    Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar

    [13]

    LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar

    [14]

    Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar

    [15]

    Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar

    [16]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [17]

    Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar

    [18]

    Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [19]

    Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar

    [20]

    Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [21]

    Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar

    [22]

    Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar

    [23]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [24]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [25]

    舒焕 2023 硕士学位论文 (北京: 北方工业大学)

    Shu H 2023 M. S. Thesis (Beijing: North China University of Technology

    [26]

    Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar

    [27]

    An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar

    [28]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [29]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar

  • [1] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [2] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [3] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [4] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [6] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [8] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [9] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [10] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [11] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理. 物理学报, 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [12] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [13] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析. 物理学报, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [14] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [17] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [18] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [19] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  637
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 修回日期:  2023-12-05
  • 上网日期:  2023-12-09
  • 刊出日期:  2024-03-05

/

返回文章
返回