搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于六水氯化钙的单相变材料热二极管的实验研究

杨旭 李静 毛宇 陶可爱 孙宽 陈珊珊 周永利 郑玉杰

引用本文:
Citation:

基于六水氯化钙的单相变材料热二极管的实验研究

杨旭, 李静, 毛宇, 陶可爱, 孙宽, 陈珊珊, 周永利, 郑玉杰

Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate

Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie
PDF
HTML
导出引用
  • 基于相反传热方向上相变程度不同引起的传热形式和系数差异设计的相变材料热二极管被认为是有潜力的热管理器件. 然而多种材料的使用或仅依靠数值模拟的研究使其结构复杂或理想化, 降低了其实际应用的可能性. 因此, 本文结合材料固液相变和自然对流过程的传热形式和传热系数变化, 提出了一个仅含有CaCl2·6H2O单相变材料的简单热二极管结构, 并制备了相应的器件, 搭建了稳态热通量测试系统用于实验研究, 其测量结果与文献记载值相近, 具有良好的准确度, 实验研究了冷热端温差和正反传热方向对热二极管热整流效果的影响规律. 结果表明: 热二极管的热通量随冷热源温差的减小而降低, 正向和反向分别沿逆重力和重力方向时, 热整流比最高可达1.58, 最佳冷源温度范围为20—25 ℃, 接近室温, 所提出的相变材料热二极管结构在建筑节能和热管理等方面具有一定的应用潜力.
    Phase change material thermal diodes designed on the basis of different heat transfer forms and coefficients caused by different phase transition degrees in opposite heat transfer directions are considered as potential thermal management devices. However, the use of a variety of materials or only relying on numerical simulation research makes its structure complex or idealized, which reduces the possibility of practical application. Therefore, in this work, a simple thermal diode structure containing only CaCl2·6H2O single-phase variable material is proposed in combination with changes in heat transfer form and heat transfer coefficient in solid-liquid phase change and natural convection process. The corresponding device is prepared, and a steady-state heat flux test system is set up for experimental study, the measured results are close to those recorded in the literature with good accuracy. The influence of the temperature difference between hot end and cold end and the direction of positive heat transfer and negative heat transfer on the thermal rectification effect of the thermal diode are studied experimentally. The results show that the heat flux of the thermal diode decreases with the decrease of the difference in temperature between the cold source and hot source, and the thermal rectification ratio reaches to 1.58 when the forward and reverse along the antigravity direction and gravity direction, respectively. The optimal cold source temperature range is 20–25 ℃, which is close to room temperature. The proposed phase change material thermal diode structure has a certain application potential in energy saving and thermal management of building.
      通信作者: 李静, lj202740@cqu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3803300)、国家自然科学基金(批准号: 51606017)、重庆市青年人才支持计划(批准号: CQYC2021059206)、中央高校基础科研业务费专项资金(批准号: 2020CDJQY-A055)和重庆市杰出青年基金(批准号: cstc2021jcyj-jqX0015)资助的课题.
      Corresponding author: Li Jing, lj202740@cqu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3803300), the National Natural Science Foundation of China (Grant No. 51606017), the Young Talents Support Program of Chongqing, China (Grant No. CQYC2021059206), the Fundamental Research Fund for the Central Universities, China (Grant No. 2020CDJQY-A055), and the Outstanding Youth Fund of Chongqing, China (Grant No. cstc2021jcyj-jqX0015).
    [1]

    Pehl M, Arvesen A, Humpenoeder F, Popp A, Hertwich E G, Luderer G 2017 Nat. Energy 2 939Google Scholar

    [2]

    McGlade C, Ekins P 2015 Nature 517 187Google Scholar

    [3]

    赖明东, 雍熙, 史文静 , rhhz_volume 2022 rhhz_volume 自然辩证法研究 38 69Google Scholar

    Lai M D, Yong X, Shi W J 2022 Stud. Dialectics. Nat. 38 69Google Scholar

    [4]

    Yang L, Yan H Y, Lam J C 2014 Appl. Energ. 115 164Google Scholar

    [5]

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126 [关玲 2023 兵器材料科学与工程 46 126]Google Scholar

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126Google Scholar

    [6]

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55 [朱浩, 王晶晶 2023 液压气动与密封 43 55]Google Scholar

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55Google Scholar

    [7]

    Zhang X H, Li Z, Luo L G, Fan Y L, Du Z Y 2022 Energy 238 121652Google Scholar

    [8]

    Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W 2018 Prog. Nat. Sci. Mater. 28 653Google Scholar

    [9]

    Tran M-K, Mevawalla A, Aziz A, Panchal S, Xie Y, Fowler M 2022 Processes 10 6

    [10]

    Yuan K J, Shi J M, Aftab W, Qin M L, Usman A, Zhou F, Lv Y, Gao S, Zou R Q 2020 Adv. Funct. Mater. 30 8Google Scholar

    [11]

    Alva G, Lin Y X, Liu L K, Fang G Y 2017 Energ. Buildings 144 276Google Scholar

    [12]

    Giro-Paloma J, Martinez M, Cabeza L F, Ines F A 2016 Renew. Sust. Energ. Rev. 53 1059Google Scholar

    [13]

    Ghanekar A, Ji J, Zheng Y 2016 Appl. Phys. Lett. 109 5Google Scholar

    [14]

    Traipattanakul B, Tso C Y, Chao C Y H 2019 Int. J. Heat Mass Transf. 135 294Google Scholar

    [15]

    Meng Z N, Gulfam R, Zhang P, Ma F 2021 Int. J. Therm. Sci. 164 9Google Scholar

    [16]

    Kasali S O, Ordonez-Miranda J, Joulain K. 2020 Int. J. Therm. Sci. 153 106393Google Scholar

    [17]

    Ordonez-Miranda J, Hill J M, Joulain K, Ezzahri Y, Drevillon J 2018 J. Appl. Phys. 123 085102Google Scholar

    [18]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [19]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [20]

    Incropera F P, DeWitt D P, Bergman T L, Lavine A S 1996 Fundamentals of Heat and Mass Transfer (5th Ed.) (New York: Wiley) pp563–601

    [21]

    Tao W, Kong X F, Bao A Y, Fan C G, Zhang Y 2020 Materials 13 22Google Scholar

    [22]

    Wang Y, Ge S X, Huang B J, Zheng Z 2019 Mater. Chem. Phys. 223 723Google Scholar

    [23]

    Nagano K, Mochida T, Takeda S, Domanski R, Rebow M 2003 Appl. Therm. Eng. 23 229Google Scholar

    [24]

    Cui W W, Zhang H Z, Xia Y P, Zou Y J, Xiang C L, Chu H L, Qiu S J, Xu F, Sun L X 2018 J. Therm. Anal. Calorim. 131 57Google Scholar

    [25]

    Li G, Zhang B B, Li X, Zhou Y, Sun Q G, Yun Q 2014 Sol. Energ. Mater. Sol. C. 126 51Google Scholar

    [26]

    Meng Z N, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transf. 147 118915Google Scholar

    [27]

    Pallecchi E, Chen Z, Fernandes G E, Wan Y, Kim J H, Xu J 2015 Mater. Horiz. 2 125Google Scholar

    [28]

    Chen R J, Cui Y L, Tian H, Yao R M, Liu Z P, Shu Y, Li C, Yang Y, Ren T L, Zhang G, Zou R Q 2015 Sci. Rep. 5 8Google Scholar

    [29]

    Lyu J, Sheng Z Z, Xu Y Y, Liu C M, Zhang X T 2022 Adv. Funct. Mater. 32 19Google Scholar

    [30]

    Wong M Y, Traipattanakul B, Tso C Y, Chao C Y H, Qiu H H 2019 Int. J. Heat Mass Transf. 138 173Google Scholar

    [31]

    Swoboda T, Klinar K, Abbasi S, Brem G, Kitanovski A, Rojo M M 2021 Iscience 24 8Google Scholar

    [32]

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40 [张新星, 周园, 李翔, 申月, 海春喜, 董欧阳, 任秀峰, 曾金波, 孙艳霞, 王石军, 杨小波 2018 储能科学与技术 7 40]Google Scholar

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40Google Scholar

    [33]

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885 [李绍伟, 傅彬彬, 李静 2022 复合材料学报 39 2885]Google Scholar

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885Google Scholar

    [34]

    Luo F B, He Y F, Cui W Q, Guo Y Y, Jin Y C, Li H Z, Huang B Q, Qian Q R 2022 Acs Appl. Polym. Mater. 4 2160Google Scholar

    [35]

    Cottrill A L, Wang S, Liu A T, Wang W J, Strano M S 2018 Adv. Energy Mater. 8 11Google Scholar

    [36]

    Moench S, Dittrich R 2022 Energies 15 11Google Scholar

  • 图 1  相变前后的S-PCMTD组成和传热形式

    Fig. 1.  S-PCMTD composition and heat transfer form before and after phase transition.

    图 2  (a) S-PCMTD的示意图; (b) 稳态测量系统的组成

    Fig. 2.  (a) Schematic diagram of S-PCMTD; (b) composition of the steady-state measurement system.

    图 3  CPP/CaCl2·6H2O的泄漏测试图像 (a) 加热前; (b) 加热后; (c) 10个热循环后

    Fig. 3.  Leakage test image of CPP/CaCl2·6H2O: (a) Before heating; (b) after heating; (c) after 10 cycles.

    图 4  (a) CaCl2·6H2O和 (b) CPP/CaCl2·6H2O的DSC曲线

    Fig. 4.  DSC curves of (a) CaCl2·6H2O and (b) CPP/ CaCl2·6H2O.

    图 5  S-PCMTD在逆重力方向(正向)和重力方向(反向)的相变和传热模型

    Fig. 5.  Phase transition and heat transfer model of S-PCMTD in the inverse of gravity direction (forward) and towards gravity direction (reverse).

    图 6  S-PCMTD在逆重力方向(正向)和重力方向(反向)的热通量和热整流比

    Fig. 6.  Heat flux and thermal rectification ratio of S-PCMTD in the inverse of gravity direction (forward) and towards gravity direction (reverse).

    图 7  S-PCMTD在逆重力方向(反向)的相变和传热模型

    Fig. 7.  Phase transition and heat transfer model of S-PCMTD in the inverse of gravity direction (reverse).

    图 8  S-PCMTD在逆重力方向的热通量和热整流比

    Fig. 8.  Heat flux and thermal rectification ratio of S-PCMTD in the inverse of gravity direction.

    图 9  S-PCMTD在垂直重力方向的相变与传热模型

    Fig. 9.  Phase transition and heat transfer model of S-PCMTD in the vertical gravity direction.

    图 10  S-PCMTD在垂直重力方向的热通量和热整流比

    Fig. 10.  Heat flux and thermal rectification ratio of S-PCMTD in the vertical gravity direction.

    表 1  测试系统测量结果

    Table 1.  Results of the measurement system.

    材料 厚度
    h/m
    冷源温度
    Tc/℃
    热源温度
    Th/℃
    样品两端温度 T1-T8温度梯度
    均值$ \tilde{T} $/(℃·m–1)
    计算热导率
    $ \dot{K} $/(W·(m·K)–1)
    文献值
    $ \ddot{K} $/(W·(m·K)–1)
    Thigh/℃ Tlow/℃
    CaCl2·6H2O 0.01 15 30 17.7 26.8 35 0.74 0.77[26]
    PEG4000 0.055 40 50 43.1 46.1 6.67 0.20 0.2319[34]
    下载: 导出CSV

    表 2  CaCl2·6H2O和CPP/CaCl2·6H2O的热物理性质

    Table 2.  Thermophysical properties of CaCl2·6H2O and CPP/CaCl2·6H2O.

    材料及其相态 等效导热系数
    K/(W·(m·K)–1)
    固态 CaCl2·6H2O 0.74
    自然对流态CaCl2·6H2O 1.10
    相变前CPP/CaCl2·6H2O 1.02
    相变后CPP/CaCl2·6H2O 0.61
    下载: 导出CSV

    表 3  CaCl2·6H2O和CPP/CaCl2·6H2O的相变相关温度点

    Table 3.  Temperature points related to phase transitions of CaCl2·6H2O and CPP/CaCl2·6H2O.

    材料CaCl2·6H2O

    初始相变
    温度
    Tm1/℃
    CaCl2·6H2O

    相变峰值
    温度
    Tp1/℃
    CaCl2·4H2O

    相变峰值
    温度
    Tp2/℃
    CaCl2·6H2O25.227.645.13
    CPP/CaCl2·6H2O24.029.944.83
    下载: 导出CSV
  • [1]

    Pehl M, Arvesen A, Humpenoeder F, Popp A, Hertwich E G, Luderer G 2017 Nat. Energy 2 939Google Scholar

    [2]

    McGlade C, Ekins P 2015 Nature 517 187Google Scholar

    [3]

    赖明东, 雍熙, 史文静 , rhhz_volume 2022 rhhz_volume 自然辩证法研究 38 69Google Scholar

    Lai M D, Yong X, Shi W J 2022 Stud. Dialectics. Nat. 38 69Google Scholar

    [4]

    Yang L, Yan H Y, Lam J C 2014 Appl. Energ. 115 164Google Scholar

    [5]

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126 [关玲 2023 兵器材料科学与工程 46 126]Google Scholar

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126Google Scholar

    [6]

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55 [朱浩, 王晶晶 2023 液压气动与密封 43 55]Google Scholar

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55Google Scholar

    [7]

    Zhang X H, Li Z, Luo L G, Fan Y L, Du Z Y 2022 Energy 238 121652Google Scholar

    [8]

    Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W 2018 Prog. Nat. Sci. Mater. 28 653Google Scholar

    [9]

    Tran M-K, Mevawalla A, Aziz A, Panchal S, Xie Y, Fowler M 2022 Processes 10 6

    [10]

    Yuan K J, Shi J M, Aftab W, Qin M L, Usman A, Zhou F, Lv Y, Gao S, Zou R Q 2020 Adv. Funct. Mater. 30 8Google Scholar

    [11]

    Alva G, Lin Y X, Liu L K, Fang G Y 2017 Energ. Buildings 144 276Google Scholar

    [12]

    Giro-Paloma J, Martinez M, Cabeza L F, Ines F A 2016 Renew. Sust. Energ. Rev. 53 1059Google Scholar

    [13]

    Ghanekar A, Ji J, Zheng Y 2016 Appl. Phys. Lett. 109 5Google Scholar

    [14]

    Traipattanakul B, Tso C Y, Chao C Y H 2019 Int. J. Heat Mass Transf. 135 294Google Scholar

    [15]

    Meng Z N, Gulfam R, Zhang P, Ma F 2021 Int. J. Therm. Sci. 164 9Google Scholar

    [16]

    Kasali S O, Ordonez-Miranda J, Joulain K. 2020 Int. J. Therm. Sci. 153 106393Google Scholar

    [17]

    Ordonez-Miranda J, Hill J M, Joulain K, Ezzahri Y, Drevillon J 2018 J. Appl. Phys. 123 085102Google Scholar

    [18]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [19]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [20]

    Incropera F P, DeWitt D P, Bergman T L, Lavine A S 1996 Fundamentals of Heat and Mass Transfer (5th Ed.) (New York: Wiley) pp563–601

    [21]

    Tao W, Kong X F, Bao A Y, Fan C G, Zhang Y 2020 Materials 13 22Google Scholar

    [22]

    Wang Y, Ge S X, Huang B J, Zheng Z 2019 Mater. Chem. Phys. 223 723Google Scholar

    [23]

    Nagano K, Mochida T, Takeda S, Domanski R, Rebow M 2003 Appl. Therm. Eng. 23 229Google Scholar

    [24]

    Cui W W, Zhang H Z, Xia Y P, Zou Y J, Xiang C L, Chu H L, Qiu S J, Xu F, Sun L X 2018 J. Therm. Anal. Calorim. 131 57Google Scholar

    [25]

    Li G, Zhang B B, Li X, Zhou Y, Sun Q G, Yun Q 2014 Sol. Energ. Mater. Sol. C. 126 51Google Scholar

    [26]

    Meng Z N, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transf. 147 118915Google Scholar

    [27]

    Pallecchi E, Chen Z, Fernandes G E, Wan Y, Kim J H, Xu J 2015 Mater. Horiz. 2 125Google Scholar

    [28]

    Chen R J, Cui Y L, Tian H, Yao R M, Liu Z P, Shu Y, Li C, Yang Y, Ren T L, Zhang G, Zou R Q 2015 Sci. Rep. 5 8Google Scholar

    [29]

    Lyu J, Sheng Z Z, Xu Y Y, Liu C M, Zhang X T 2022 Adv. Funct. Mater. 32 19Google Scholar

    [30]

    Wong M Y, Traipattanakul B, Tso C Y, Chao C Y H, Qiu H H 2019 Int. J. Heat Mass Transf. 138 173Google Scholar

    [31]

    Swoboda T, Klinar K, Abbasi S, Brem G, Kitanovski A, Rojo M M 2021 Iscience 24 8Google Scholar

    [32]

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40 [张新星, 周园, 李翔, 申月, 海春喜, 董欧阳, 任秀峰, 曾金波, 孙艳霞, 王石军, 杨小波 2018 储能科学与技术 7 40]Google Scholar

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40Google Scholar

    [33]

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885 [李绍伟, 傅彬彬, 李静 2022 复合材料学报 39 2885]Google Scholar

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885Google Scholar

    [34]

    Luo F B, He Y F, Cui W Q, Guo Y Y, Jin Y C, Li H Z, Huang B Q, Qian Q R 2022 Acs Appl. Polym. Mater. 4 2160Google Scholar

    [35]

    Cottrill A L, Wang S, Liu A T, Wang W J, Strano M S 2018 Adv. Energy Mater. 8 11Google Scholar

    [36]

    Moench S, Dittrich R 2022 Energies 15 11Google Scholar

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐. 物理学报, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波. 片上光互连器件的智能化设计研究进展. 物理学报, 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [6] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化. 物理学报, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [7] 和琨, 郭秀娅, 张小盈, 汪垒. 方腔内电场强化固液相变传热. 物理学报, 2021, 70(14): 149101. doi: 10.7498/aps.70.20202127
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [11] 刘国强, 柯亚娇, 张孔斌, 何雄, 罗丰, 何斌, 孙志刚. 全固态磁制冷系统物理模型的研究进展. 物理学报, 2019, 68(21): 217501. doi: 10.7498/aps.68.20191139
    [12] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [13] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [14] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [15] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究. 物理学报, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [16] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] 王保争, 张安琪, 吴宏滨, 杨伟, 文尚胜. 一种基于荧光材料的聚合物白光发光二极管. 物理学报, 2010, 59(6): 4240-4244. doi: 10.7498/aps.59.4240
    [18] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [19] 刘丽峰, 吕惠宾, 戴守愚, 陈正豪. 巨磁电阻材料La0.9Sr0.1MnO3与半导体Si组成的二极管的整流特性. 物理学报, 2005, 54(5): 2342-2345. doi: 10.7498/aps.54.2342
    [20] 张鹏, 王如竹, 村上正秀. 超流氦浴中的热波传热研究. 物理学报, 2002, 51(6): 1350-1354. doi: 10.7498/aps.51.1350
计量
  • 文章访问数:  1466
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 修回日期:  2023-12-04
  • 上网日期:  2023-12-12
  • 刊出日期:  2024-03-05

/

返回文章
返回