搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强流离子源的离子束溅射镀膜设备均匀性优化

李桑丫 张艾霖 徐欣 吕涛 王世康 罗箐

引用本文:
Citation:

基于强流离子源的离子束溅射镀膜设备均匀性优化

李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐

Uniformity optimization of ion beam sputtering coating equipment based on strong current ion source

Li Sang-Ya, Zhang Ai-Lin, Xu Xin, Lü Tao, Wang Shi-Kang, Luo Qing
PDF
HTML
导出引用
  • 随着高端光学器件镀膜的发展, 其多样性溅射镀膜需求对离子束流流强、均匀度和可调性提出了更高的要求. 对于新一代离子束溅射镀膜机来说, 如何在不同离子比、不同流强的束流下保持足够的均匀度, 成为了溅射镀膜设备的一大难题. 本文提出了一种基于三电极引出系统的优化模拟方法, 模拟和优化了离子源的引出系统, 研究了等离子体电极、抑制电极、引出电极的形状、角度、距离对离子束引出性能的影响. 同时, 重点研究了离子比对束流引出的影响. 该模型可以指导科研工作者根据离子源的状态和应用需求, 对三电极引出系统的角度、距离和形状进行系统优化并找出最优解. 最后, 本文还给出了一种方法对混合离子束的溅射深度进行了估算.
    The widespread application of ion beam sputtering coating, especially in optical devices, requires the improvement of beam current intensity and uniformity of large-area uniform coatings. The advent of high current Penning sources offers a potential solution. This study introduces an automated optimization simulation method based on a three-electrode extraction system to investigate its influence on ion beam quality and uniformity. Focusing on high current intensity and uniformity, our simulation explores the effects of plasma electrode, inhibition electrode, and extraction electrode angles and distances on ion beam performance. Evaluation metrics include average beam intensity density, average energy of a single particle, and reciprocal variance of each macro particle position, which are achieved through normalization functions, allowing comprehensive comparison of simulation results. To assess coating efficiency, we estimate sputtering yield and depth. The study identifies patterns among electrodes and emphasizes the influence of different ion ratios on beam extraction. The results indicate that optimizing the angle of the plasma electrode and the distance of the suppressed electrode yields a highly uniform ion beam for low charge ions. However, for highly charged ions, similar optimization will reduce the current strength, so compensation needs to be achieved through electrode shape optimization. This research provides a model for systematically optimizing the three-electrode extraction system, guiding researchers in achieving optimal solutions based on ion source characteristics and application requirements. Additionally, we introduce a method of estimating the sputtering depth of mixed ion beams. This study provides valuable insights for advancing ion beam sputtering coating technology and reference for making the decision on design and application of ion source.
      通信作者: 张艾霖, ailinz@ustc.edu.cn ; 罗箐, luoqing@ustc.edu.cn
    • 基金项目: 国家重点研发计划课题 (批准号: 2022YFA1602201)、国家自然科学基金青年科学基金(批准号: 12105278) 、中国科学技术大学学生创新创业和成果转化行动计划学生创新创业基金(批准号: CY2022G07)、安徽省高等学校省级质量工程项目(批准号: 2021jyxm1731)、中国科学院国际伙伴计划国际大科学计划培育专项项目(批准号: 211134KYSB20200057)和中央高校基本科研业务费资助的课题.
      Corresponding author: Zhang Ai-Lin, ailinz@ustc.edu.cn ; Luo Qing, luoqing@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602201), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12105278), the Student Innovation and Entrepreneurship Fund of Action Plan for Student Innovation and Entrepreneurship and Achievement Transformation at the University of Science and Technology of China (Grant No. CY2022G07), the Quality Engineering Project for Higher Education Institutions of Anhui Province, China (Grant No. 2021jyxm1731), the International Partnership Program of the Chinese Academy of Sciences (Grant No. 211134KYSB20200057), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    Wei D T 1989 Appl. Opt. 28 2813Google Scholar

    [2]

    Ristau D 2005 Proc. SPE 5963 596313Google Scholar

    [3]

    Becker J, Scheuer V 1990 Appl. Opt. 29 4303Google Scholar

    [4]

    刘金声2003离子束沉积薄膜技术及其应用(北京: 国防工业出版社)第50—58页

    Liu J S 2003 Ion Beam Deposition Film Technology and Application (Beijing: National Defense Industry Press) pp50–58

    [5]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [6]

    Nouri Z, Li R, Holt R A 2010 Nuclear Instr. Meth. A 614 174Google Scholar

    [7]

    Mamedov N V, Maslennikov S P, Presnyakov Y K, Solodovnikov A A, Yurkov D I 2019 Tech. Phys. 64 1290Google Scholar

    [8]

    Zhang A L, Li D, Xu L C, Xiong Z J, Zhang J Y, Peng H P, Luo Q 2022 Phys. Rev. Accel. Beams 25 103501Google Scholar

    [9]

    方应翠 2014 真空镀膜原理与技术 (北京: 高等教育出版社) 第183—190页

    Fang Y C 2014 Principle and Technology of Vacuum Coating (Beijing: Higher Education Press) pp183–190

    [10]

    王惠三, 简广德, 周才品, 雷光玖, 姜韶风, 卢大伦, 江涛 2001 核聚变与等离子体物理 21 101

    Wang H S, Jian G D, Zhou C P, Lei G J, Jiang S F, Lu D L, Jiang T 2001 Nuclear Fusion and Plasma Physics 21 101

    [11]

    陈佳洱 1993 加速器物理基础(初版) (北京: 原子能出版社) 第29—30页

    Chen J E 1993 Fundamentals of Accelerator Physics (First Edition) (Beijing: Atomic Energy Press) pp29–30

    [12]

    Macdonald J A 2020 Ph. D Dissertation (Columbia: The University of Columbiabritish

    [13]

    Zhang M, Vassiliadis S, Delgado-Frias J G 1996 IEEE Trans. Comput. 45 1045Google Scholar

    [14]

    Bohdansky J 1984 Nuclear Instrum. Methods Phys. Res. B 2 587Google Scholar

    [15]

    Seah M P, Clifford C A, Green F M, Gilmore I S 2005 Nuclear Instrum. Methods Phys. Res. B 37 444Google Scholar

    [16]

    王云, 陈志, 赵红卫, 赵阳阳, 孙良亭, 杨尧, 钱程, 武启, 马鸿义, 张文慧, 张子民, 张雪珍, 刘占稳 2013 原子核物理评论 30 141Google Scholar

    Wang Y, Chen Z, Zhao H W, Zhao Y Y, Sun L T, Yang Y, Qian C, Wu Q, MA H Y, Zhang W H, Zhang Z M, Zhang X Z, Liu Z W 2013 Nucl. Phys. Rev. 30 141Google Scholar

    [17]

    IBSimu Reference Manual, Doxygen https://ibsimu.sourceforge.net/manual.html [2023-9-13

    [18]

    Ren H T, Zhao J, Peng S X, Lu P N, Zhou Q F, Xu Y, Chen J, Zhang T, Zhang A L, Guo Z Y, Chen J E 2014 Rev. Sci. Instrum. 85 2Google Scholar

    [19]

    Yamamura Y, Tawara H 1996 At. Data Nucl. Data Tables 62 149Google Scholar

    [20]

    Wei Q, Li K D, Lian J, Wang L M 2008 J. Phys. D 41 172002Google Scholar

    [21]

    Sigmund P 1973 J. Mater. Sci. 8 1545Google Scholar

  • 图 1  初始引出电极设计

    Fig. 1.  Initial extraction electrode design.

    图 2  优化前后的等离子体极形状 (a)两种初始等离子体电极设计; (b)优化后的等离子体电极设计(等离子体电极为15 keV, 抑制电极为–5 keV)

    Fig. 2.  Optimized plasma pole shape: (a) Two initial plasma electrode designs; (b) optimized plasma electrode design (Plasma electrode is 15 keV, suppression electrode is –5 keV).

    图 3  各电极角度变化量对束流品质的影响 (a)三电极同步角度调整; (b)等离子体电极角度调整; (c)抑制电极角度调整; (d)引出电极角度调整

    Fig. 3.  Influence of angle variation of each electrode on beam quality: (a) Three-electrode synchronization angle adjustment; (b) plasma electrode angle adjustment; (c) inhibit electrode angle adjustment; (d) extraction electrode angle adjustment.

    图 4  等离子电极与引出电极的角度共同作用对束流质量的影响

    Fig. 4.  The influence of the angles of plasma electrode and extraction electrode on beam quality.

    图 5  有无抑制电极时的束流对比图 (a) 无抑制电极; (b) 有抑制电极

    Fig. 5.  Comparison diagram of the beam with and without the suppression electrode: (a) Without the suppression electrode; (b) with the suppression electrode.

    图 6  各组别抑制电极距离对束流品质的影响

    Fig. 6.  The influence of electrode distance on beam quality in each group.

    图 7  各组别引出电极距离对束流品质的影响

    Fig. 7.  The influence of the distance of the leading electrode on the beam quality.

    图 8  不同离子比对引出束流质量的模拟

    Fig. 8.  Simulation of extracted beam mass by different ion ratios.

    图 9  智能优化后的15 keV引出模拟

    Fig. 9.  The optimized 15 keV extraction simulation.

    图 10  优化前后束流截面能量分布对比 (a)优化前; (b) 优化后

    Fig. 10.  The comparison of energy distribution of the beam before and after optimation: (a) Before optimation; (b) after optimation.

    图 11  优化后的1.5 keV引出模拟

    Fig. 11.  The optimized 1.5 keV extraction simulation.

    图 12  氢离子优化引出Ni靶的溅射深度估值

    Fig. 12.  Estimation of sputtering depth of Ni target induced by hydrogen ion optimization.

    表 1  潘宁源参数

    Table 1.  Parameters of penning source.

    参数符号单位
    束流流强密度JA/m0.1
    等离子体极电位V1keV1.5
    引出电极电位V2V0
    电离室轴向引出开口rm0.003
    下载: 导出CSV

    表 2  优化参数

    Table 2.  Optimized parameters.

    参数符号单位
    束流流强密度JA/m20.1
    电极的角度变化Anglerad0
    抑制电极与离子源的距离l1m0.0185
    引出电极与离子源的距离l2m0.033
    下载: 导出CSV

    表 3  优化电极的角度选择

    Table 3.  Optimize electrode angle selection.

    组别 等离子体电极
    角度变化/rad
    引出电极
    角度变化/rad
    加权评估值
    1 0 0.331613 0.7300489
    2 0.24 0.19 0.7300489
    3 –0.0174 0.21 0.73071698
    4 0.21 0.227 0.73080603
    5 0.19 0.4 0.73085056
    下载: 导出CSV

    表 4  优化抑制电极的选择

    Table 4.  The selection of optimized inhibition electrode.

    组别 等离子体电极
    角度变化/rad
    引出电极
    角度变化/rad
    抑制电极位置/m
    1 0 0.331613 0.019
    2 0.21 0.227 0.030
    3 0.21 0.227 0.022
    下载: 导出CSV
  • [1]

    Wei D T 1989 Appl. Opt. 28 2813Google Scholar

    [2]

    Ristau D 2005 Proc. SPE 5963 596313Google Scholar

    [3]

    Becker J, Scheuer V 1990 Appl. Opt. 29 4303Google Scholar

    [4]

    刘金声2003离子束沉积薄膜技术及其应用(北京: 国防工业出版社)第50—58页

    Liu J S 2003 Ion Beam Deposition Film Technology and Application (Beijing: National Defense Industry Press) pp50–58

    [5]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [6]

    Nouri Z, Li R, Holt R A 2010 Nuclear Instr. Meth. A 614 174Google Scholar

    [7]

    Mamedov N V, Maslennikov S P, Presnyakov Y K, Solodovnikov A A, Yurkov D I 2019 Tech. Phys. 64 1290Google Scholar

    [8]

    Zhang A L, Li D, Xu L C, Xiong Z J, Zhang J Y, Peng H P, Luo Q 2022 Phys. Rev. Accel. Beams 25 103501Google Scholar

    [9]

    方应翠 2014 真空镀膜原理与技术 (北京: 高等教育出版社) 第183—190页

    Fang Y C 2014 Principle and Technology of Vacuum Coating (Beijing: Higher Education Press) pp183–190

    [10]

    王惠三, 简广德, 周才品, 雷光玖, 姜韶风, 卢大伦, 江涛 2001 核聚变与等离子体物理 21 101

    Wang H S, Jian G D, Zhou C P, Lei G J, Jiang S F, Lu D L, Jiang T 2001 Nuclear Fusion and Plasma Physics 21 101

    [11]

    陈佳洱 1993 加速器物理基础(初版) (北京: 原子能出版社) 第29—30页

    Chen J E 1993 Fundamentals of Accelerator Physics (First Edition) (Beijing: Atomic Energy Press) pp29–30

    [12]

    Macdonald J A 2020 Ph. D Dissertation (Columbia: The University of Columbiabritish

    [13]

    Zhang M, Vassiliadis S, Delgado-Frias J G 1996 IEEE Trans. Comput. 45 1045Google Scholar

    [14]

    Bohdansky J 1984 Nuclear Instrum. Methods Phys. Res. B 2 587Google Scholar

    [15]

    Seah M P, Clifford C A, Green F M, Gilmore I S 2005 Nuclear Instrum. Methods Phys. Res. B 37 444Google Scholar

    [16]

    王云, 陈志, 赵红卫, 赵阳阳, 孙良亭, 杨尧, 钱程, 武启, 马鸿义, 张文慧, 张子民, 张雪珍, 刘占稳 2013 原子核物理评论 30 141Google Scholar

    Wang Y, Chen Z, Zhao H W, Zhao Y Y, Sun L T, Yang Y, Qian C, Wu Q, MA H Y, Zhang W H, Zhang Z M, Zhang X Z, Liu Z W 2013 Nucl. Phys. Rev. 30 141Google Scholar

    [17]

    IBSimu Reference Manual, Doxygen https://ibsimu.sourceforge.net/manual.html [2023-9-13

    [18]

    Ren H T, Zhao J, Peng S X, Lu P N, Zhou Q F, Xu Y, Chen J, Zhang T, Zhang A L, Guo Z Y, Chen J E 2014 Rev. Sci. Instrum. 85 2Google Scholar

    [19]

    Yamamura Y, Tawara H 1996 At. Data Nucl. Data Tables 62 149Google Scholar

    [20]

    Wei Q, Li K D, Lian J, Wang L M 2008 J. Phys. D 41 172002Google Scholar

    [21]

    Sigmund P 1973 J. Mater. Sci. 8 1545Google Scholar

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制. 物理学报, 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [2] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟. 物理学报, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [3] 张罡, 杨国君, 何小中, 杜洋, 石金水, 李小安. 18 MeV自引出回旋加速器关键技术. 物理学报, 2022, 71(21): 212901. doi: 10.7498/aps.71.20220934
    [4] 夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [5] 卢肖勇, 袁程, 高阳. 考虑共振电荷转移的离子引出过程理论研究. 物理学报, 2021, 70(14): 145201. doi: 10.7498/aps.70.20210105
    [6] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211519
    [7] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [8] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [9] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群. 表面产生负氢离子引出MCC算法设计. 物理学报, 2013, 62(2): 025206. doi: 10.7498/aps.62.025206
    [10] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重. 体积产生负氢离子能量沉积及引出效率数值模拟研究. 物理学报, 2012, 61(23): 235201. doi: 10.7498/aps.61.235201
    [11] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究. 物理学报, 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [13] 宋晓鹏, 陈 戎, 包成玉, 王德武. 平行板静电场法离子引出的对称收集. 物理学报, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [14] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [16] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集. 物理学报, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [17] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [18] 朱红莲, 王德武. 离子引出收集的沉积与溅射研究. 物理学报, 2002, 51(6): 1338-1345. doi: 10.7498/aps.51.1338
    [19] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
    [20] 盛谏. 高频离子源引出结构最佳尺寸的光学计算. 物理学报, 1963, 19(12): 782-790. doi: 10.7498/aps.19.782
计量
  • 文章访问数:  2882
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-11-22
  • 上网日期:  2023-12-05
  • 刊出日期:  2024-03-05

/

返回文章
返回