搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光滑及粗糙表面纳米气泡成核与生长动力学行为研究

杨海昌 徐梦迪 邢耀文 桂夏辉 曹亦俊

引用本文:
Citation:

光滑及粗糙表面纳米气泡成核与生长动力学行为研究

杨海昌, 徐梦迪, 邢耀文, 桂夏辉, 曹亦俊

Study on Nucleation and Growth Kinetics of Nanobubbles on Smooth and Rough Surfaces

Yang Hai-Chang, Xu Meng-Di, Xing Yao-Wen, Gui Xia-Hui, Cao Yi-Jun
PDF
导出引用
  • 界面纳米气泡的存在已被证实,其在矿物浮选、水产养殖、废水处理等多个领域极具应用潜力,但纳米气泡微观成核过程仍未明晰。本研究基于气体扩散理论建立了纳米气泡生长动力学模型,并借助分子动力学模拟研究了表面粗糙度和气体过饱和对纳米气泡成核和生长动力学的影响机制。结果表明:光滑均质表面上,随着气体过饱和度从100增加至150,纳米气泡的成核时间逐渐缩短,生长速率逐渐加快,且理论模型可以较好地拟合纳米气泡的生长动力学过程。然而,当气体过饱和度降低至50时,纳米气泡在200 ns模拟时间内始终未成核,这是由于低气体过饱和度时纳米气泡临界成核尺寸较大导致成核难度增加。在凹坑宽度为1~10 nm的粗糙表面上,气体过饱和度为50时,表面凹坑均迅速生成气核,但凹坑宽度在2 nm以下时气核难以生长为纳米气泡。理论分析表明:只有凹坑尺寸所对应的最小气泡半径达到纳米气泡临界成核半径时,凹坑中的气核才能生长为纳米气泡。研究结果将进一步完善纳米气泡成核理论体系,同时为纳米气泡生成调控及应用提供理论支撑。
    The existence of interfacial nanobubbles (INBs) has been confirmed, and they demonstrate significant potential for applications in fields such as mineral flotation, aquaculture, and wastewater treatment. However, the microscopic nucleation process of INBs remains poorly understood. This study investigates the nucleation process and growth dynamics of INBs on smooth and rough surfaces under varying levels of gas supersaturation. Molecular dynamics (MD) simulations using GROMACS software package were conducted to observe the microscopic nucleation process and the temporal evolution of the geometric characteristics of the INBs. Additionally, a growth dynamics model for INBs was derived based on the Epstein-Plesset gas diffusion theory, and the model's predictions were compared with the MD simulation data.
    The results indicate that, on smooth homogeneous surfaces, the curvature radius and width of INBs increase progressively over time after nucleation. This growth process is well captured by the theoretical model, suggesting that the gas diffusion theory provides an accurate description of INB growth dynamics. Moreover, the contact angle (measured on the gas side) during INB growth is not constant—it increases initially before stabilizing. This phenomenon is attributed to the reduction in solid-gas interfacial tension due to higher Laplace pressure, which causes the contact angle to increase as the INB radius grows. Furthermore, on smooth homogeneous surfaces, INBs were observed to nucleate at 81 ns, 17 ns, 6 ns, and 1.3 ns under gas supersaturation levels of 100, 120, 150, and 200, respectively. This demonstrates that higher gas supersaturation significantly shortens the nucleation time. Additionally, as gas supersaturation increases, the growth rate of INBs following nucleation also accelerates. However, at a gas supersaturation level of 50, no nucleation occurred within the 200 ns simulation period. Theoretical analysis revealed that INBs can only nucleate and grow when the radius of gas aggregates exceeds the critical nucleation radius $\underline{R}_{\text {critical }} \equiv \frac{\underline{\sigma}}{\zeta \underline{\sigma}_0}$, where σ is liquid-gas interfacial tension, $\zeta$ is gas supersaturation level, and P0 is ambient pressure). As gas supersaturation decreases, Rcritical increases, significantly increasing the difficulty of nucleation.
    On rough surfaces, pits with widths of 1 nm, 2 nm, 4 nm, and 10 nm were introduced. At a gas supersaturation of 50—where no INB nucleation occurred on smooth surfaces—gas nuclei rapidly formed within the pits. However, only gas nuclei in pits with widths larger than 2 nm were able to grow into INBs. This is because, during the growth process, the pinning effect at the pit edges causes the curvature radius of the gas nuclei to initially decrease and then increase. Gas nuclei can only develop into INBs if the minimum curvature radius exceeds the critical nucleation radius.
    The findings of this study provide deeper insights into the nucleation mechanism of INBs, offer practical guidance for controlling their generation, and deliver theoretical support for related applications such as mineral flotation and other industrial processes.
  • [1]

    Parker J L, Claesson P M, Attard P 1994 J. Phys.Chem. 98 8468

    [2]

    Yang H C, Guo H, Xing Y W, Gui X H, Cao Y J 2022J. China Coal Soc. 47 2455(in Chinese) [杨海昌, 郭涵, 邢耀文, 桂夏辉, 曹亦俊2022 煤炭学报 47 2455]

    [3]

    Bao X C, Xing Y W, Zhang F F, Zhang D K, Liu Q S, Yang H C, Gui X H 2024Acta Phys. Sin. 73 036801(in Chinese) [包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉2024 物理学报 73 036801]

    [4]

    Xing Y W, Yang H C, Gui X H, Cao Y J 2024Coal Prep. Technol. 52 1(in Chinese) [邢耀文, 杨海昌, 桂夏辉, 曹亦俊2024 选煤技术 52 1]

    [5]

    Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H 2013 PloS one 8 e65339

    [6]

    Sang H, Jiao X, Wang S, Guo W, Salahou M, Liu K 2018 Plant, Soil and Environment 64

    [7]

    Batagoda J, Aluthgun Hewage S, Meegoda J 2019 Journal of Environmental Engineering and Science 14 1

    [8]

    Xia Z, Hu L, Kusaba S, Song D 2019 pp796-803

    [9]

    Liu G, Craig V S 2009 ACS Appl Mater Interfaces 1 481

    [10]

    Zhu J, An H, Alheshibri M, Liu L, Terpstra P, Liu G, Craig V 2016 Langmuir 32

    [11]

    Yang H, Zeng B, Zhang X, Xing Y, Gui X, Cao Y 2023 Phys. Fluids 35 032108

    [12]

    Zimmerman W B, Tesař V, Bandulasena H 2011 Current Opinion in Colloid & Interface Science - CURR OPIN COLLOID INTERFACE S 16 350

    [13]

    Ljunggren S, Eriksson J C 1997 Colloids and Surfaces A: Physicochemical and Engineering Aspects 129 151

    [14]

    Lou S, Ouyang Z, Yi Z, Li X, Hu J, Li M, Yang F 2000 J. Vac. Sci. Technol. B 18 2573

    [15]

    Ishida N, Inoue T, Miyahara M, Higashitani K 2000 Langmuir 16 6377

    [16]

    Yang H C 2023Ph. D. Dissertation (Xuzhou: China University of Mining and Technology) (in Chinese) [杨海昌2023(徐州: 中国矿业大学)]

    [17]

    Karpitschka S, Dietrich E, Seddon J R, Zandvliet H J, Lohse D, Riegler H 2012 Phys. Rev. Lett. 109 066102

    [18]

    Hain N, Wesner D, Druzhinin S I, Schönherr H 2016 Langmuir 32 11155

    [19]

    Chan C U, Ohl C D 2012 Phys. Rev. Lett. 109 174501

    [20]

    Shin D, Park J B, Kim Y-J, Kim S J, Kang J H, Lee B, Cho S-P, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068

    [21]

    Zhang X, Khan A, Ducker W A 2007 Phys. Rev. Lett. 98 136101

    [22]

    Zhou L, Wang X, Shin H-J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J, Zhang L 2020 J. Am. Chem. Soc. 142 5583

    [23]

    Ducker W A 2009 Langmuir 25 8907

    [24]

    Brenner M P, Lohse D 2008 Phys. Rev. Lett. 101 214505

    [25]

    Lohse D, Zhang X 2015 Phys. Rev. E 91 031003

    [26]

    Tan B H, An H, Ohl C D 2019 Phys. Rev. Lett. 122 134502

    [27]

    Tan B H, An H, Ohl C D 2018 Phys. Rev. Lett. 120 164502

    [28]

    Yang H, Xing Y, Zhang F, Gui X, Cao Y 2024 Fundamental Research 4 35

    [29]

    Wen B, Pan Y, Zhang L, Wang S, Zhou L, Wang C, Hu J 2022 Physical Review Fluids 7 103601

    [30]

    Lan L, Pan Y, Zhou L, Kuang H, Zhang L, Wen B 2025 J. Colloid. Interf. Sci. 678 322

    [31]

    Qian J, Craig V S J, Jehannin M 2019 Langmuir 35 718

    [32]

    Wang X, Zhao B, Ma W, Wang Y, Gao X, Tai R, Zhou X, Zhang L 2015 ChemPhysChem 16 1003

    [33]

    Hampton M A, Donose B C, Nguyen A V 2008 J. Colloid. Interf. Sci. 325 267

    [34]

    An H, Tan B H, Zeng Q, Ohl C-D 2016 Langmuir 32 11212

    [35]

    Zhou L-M, Wang S, Qiu J, Wang L, Wang X-Y, Li B, Zhang L-J, Hu J 2017 Chin. Phys. B 26 106803

    [36]

    Bouwhuis W, van der Veen R C A, Tran T, Keij D L, Winkels K G, Peters I R, van der Meer D, Sun C, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 109 264501

    [37]

    Zou Z-L, Quan N-N, Wang X-Y, Wang S, Zhou L-M, Hu J, Zhang L-J, Dong Y-M 2018 Chin. Phys. B 27 459

    [38]

    Mao M, Zhang J, Yoon R-H, Ducker W A 2004 Langmuir 20 4310

    [39]

    Takata Y, Cho J H J, Law B M, Aratono M 2006 Langmuir 22 1715

    [40]

    Dammer S M, Lohse D 2006 Phys. Rev. Lett. 96 206101

    [41]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501

    [42]

    Peng H, Birkett G R, Nguyen A V 2013 Langmuir 29 15266

    [43]

    Xiao Q, Liu Y, Guo Z, Liu Z, Lohse D, Zhang X 2017 Langmuir 33 8090

    [44]

    Zhang Y, Zhu X, Wood J A, Lohse D 2024 Proceedings of the National Academy of Sciences 121 e2321958121

    [45]

    Yang H, Jiang H, Cheng Y, Xing Y, Cao Y, Gui X 2024 J. Mol. Liq. 411

    [46]

    Zhang X, Fan Z, Tong Q, Fu Y 2024 Acta Physica Sinica 73 204701(in Chinese) [张雪松, 范振忠, 仝其雷, 付沅峰2024 物理学报 73 204701]

    [47]

    Wang Z, Yang L, Liu C, Lin S 2023 Chin. Phys. B 32 023101

    [48]

    Yang X, Yang Q, Zhou L, Zhang L, Hu J 2022 Chin. Phys. B 31 054702

    [49]

    Páll S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B, Lindahl E 2020 The Journal of Chemical Physics 153

    [50]

    Liu Y, Zhang X 2014 J. Chem. Phys. 141 134702

    [51]

    Epstein P S, Plesset M S 1950 J. Chem. Phys. 18 1505

    [52]

    Enríquez O R, Sun C, Lohse D, Prosperetti A, van der Meer D 2014 J. Fluid Mech. 741 R1 R1

    [53]

    Enríquez O R, Hummelink C, Bruggert G-W, Lohse D, Prosperetti A, van der Meer D, Sun C 2013 Rev. Sci. Instrum. 84 065111

    [54]

    Dietrich E, Zandvliet H J, Lohse D, Seddon J R 2013 Journal of Physics Condensed Matter 25 184009

    [55]

    Yang H, Zhang F, Xing Y, Gui X, Cao Y 2022 Frontiers in Materials 8

    [56]

    Zhang F, Cai H, Fan G, Gui X, Xing Y, Cao Y 2024 Colloids and Surfaces A: Physicochemical and Engineering Aspects 699 134633

    [57]

    Li C, Zhang Y, Zhang H 2024 Sep. Purif. Technol. 328 125079

    [58]

    Wang C, Lu Y, Feng D, Zhou J, Li Y, Zhang H 2023 Tribology International 177 107940

    [59]

    Li D, Ji Y, Zhang Z, Li Y 2023 Tribology International 190 109037

    [60]

    Vega-Sanchez C, Peppou-Chapman S, Zhu L, Neto C 2022 Nat. Commun. 13 351

    [61]

    Liu G, Wu Z, Craig V S 2008 J. Phys. Chem. C 112 16748

  • [1] 梁建, 王华光, 张泽新. 粗糙和光滑椭球胶体的受限扩散. 物理学报, doi: 10.7498/aps.73.20240559
    [2] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真. 物理学报, doi: 10.7498/aps.71.20212420
    [3] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, doi: 10.7498/aps.67.20180823
    [4] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, doi: 10.7498/aps.66.244209
    [5] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, doi: 10.7498/aps.66.194201
    [6] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, doi: 10.7498/aps.65.214301
    [7] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, doi: 10.7498/aps.64.054701
    [8] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, doi: 10.7498/aps.64.024101
    [9] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, doi: 10.7498/aps.64.234203
    [10] 刘思思, 张朝辉, 何建国, 周杰, 尹恒洋. 亲水性微观粗糙表面润湿状态转变性能研究. 物理学报, doi: 10.7498/aps.62.206201
    [11] 罗子江, 周勋, 王继红, 郭祥, 张毕禅, 周清, 刘珂, 丁召. InGaAs薄膜表面的粗糙化过程. 物理学报, doi: 10.7498/aps.62.036802
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, doi: 10.7498/aps.62.196801
    [13] 王亚珍, 黄平. 纳米级随机粗糙表面微观滑动摩擦力的计算研究. 物理学报, doi: 10.7498/aps.62.106801
    [14] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, doi: 10.7498/aps.62.024204
    [15] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究. 物理学报, doi: 10.7498/aps.61.014210
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, doi: 10.7498/aps.58.7050
    [17] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, doi: 10.7498/aps.56.2422
    [18] 郑瑞伦, 冉扬强, 陈 洪, 平荣刚. Mo2C膜表面快速粗糙化现象研究. 物理学报, doi: 10.7498/aps.49.1335
    [19] 李超荣, 朱爱军, 戴道扬, 麦振洪. SrTiO3基片的晶体质量及表面粗糙结构的X射线研究. 物理学报, doi: 10.7498/aps.46.1758
    [20] 程路, 萧季驹. 非相干光源用于“核-环比”法测量表面粗糙度. 物理学报, doi: 10.7498/aps.39.10
计量
  • 文章访问数:  114
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-29

/

返回文章
返回