-
界面纳米气泡的存在已被证实,其在矿物浮选、水产养殖、废水处理等多个领域极具应用潜力,但纳米气泡微观成核过程仍未明晰。本研究基于气体扩散理论建立了纳米气泡生长动力学模型,并借助分子动力学模拟研究了表面粗糙度和气体过饱和对纳米气泡成核和生长动力学的影响机制。结果表明:光滑均质表面上,随着气体过饱和度从100增加至150,纳米气泡的成核时间逐渐缩短,生长速率逐渐加快,且理论模型可以较好地拟合纳米气泡的生长动力学过程。然而,当气体过饱和度降低至50时,纳米气泡在200 ns模拟时间内始终未成核,这是由于低气体过饱和度时纳米气泡临界成核尺寸较大导致成核难度增加。在凹坑宽度为1~10 nm的粗糙表面上,气体过饱和度为50时,表面凹坑均迅速生成气核,但凹坑宽度在2 nm以下时气核难以生长为纳米气泡。理论分析表明:只有凹坑尺寸所对应的最小气泡半径达到纳米气泡临界成核半径时,凹坑中的气核才能生长为纳米气泡。研究结果将进一步完善纳米气泡成核理论体系,同时为纳米气泡生成调控及应用提供理论支撑。The existence of interfacial nanobubbles (INBs) has been confirmed, and they demonstrate significant potential for applications in fields such as mineral flotation, aquaculture, and wastewater treatment. However, the microscopic nucleation process of INBs remains poorly understood. This study investigates the nucleation process and growth dynamics of INBs on smooth and rough surfaces under varying levels of gas supersaturation. Molecular dynamics (MD) simulations using GROMACS software package were conducted to observe the microscopic nucleation process and the temporal evolution of the geometric characteristics of the INBs. Additionally, a growth dynamics model for INBs was derived based on the Epstein-Plesset gas diffusion theory, and the model's predictions were compared with the MD simulation data.
The results indicate that, on smooth homogeneous surfaces, the curvature radius and width of INBs increase progressively over time after nucleation. This growth process is well captured by the theoretical model, suggesting that the gas diffusion theory provides an accurate description of INB growth dynamics. Moreover, the contact angle (measured on the gas side) during INB growth is not constant—it increases initially before stabilizing. This phenomenon is attributed to the reduction in solid-gas interfacial tension due to higher Laplace pressure, which causes the contact angle to increase as the INB radius grows. Furthermore, on smooth homogeneous surfaces, INBs were observed to nucleate at 81 ns, 17 ns, 6 ns, and 1.3 ns under gas supersaturation levels of 100, 120, 150, and 200, respectively. This demonstrates that higher gas supersaturation significantly shortens the nucleation time. Additionally, as gas supersaturation increases, the growth rate of INBs following nucleation also accelerates. However, at a gas supersaturation level of 50, no nucleation occurred within the 200 ns simulation period. Theoretical analysis revealed that INBs can only nucleate and grow when the radius of gas aggregates exceeds the critical nucleation radius $\underline{R}_{\text {critical }} \equiv \frac{\underline{\sigma}}{\zeta \underline{\sigma}_0}$, where σ is liquid-gas interfacial tension, $\zeta$ is gas supersaturation level, and P0 is ambient pressure). As gas supersaturation decreases, Rcritical increases, significantly increasing the difficulty of nucleation.
On rough surfaces, pits with widths of 1 nm, 2 nm, 4 nm, and 10 nm were introduced. At a gas supersaturation of 50—where no INB nucleation occurred on smooth surfaces—gas nuclei rapidly formed within the pits. However, only gas nuclei in pits with widths larger than 2 nm were able to grow into INBs. This is because, during the growth process, the pinning effect at the pit edges causes the curvature radius of the gas nuclei to initially decrease and then increase. Gas nuclei can only develop into INBs if the minimum curvature radius exceeds the critical nucleation radius.
The findings of this study provide deeper insights into the nucleation mechanism of INBs, offer practical guidance for controlling their generation, and deliver theoretical support for related applications such as mineral flotation and other industrial processes.-
Keywords:
- nanobubble nucleation /
- smooth surface /
- rough surface /
- gas supersaturation
-
[1] Parker J L, Claesson P M, Attard P 1994 J. Phys.Chem. 98 8468
[2] Yang H C, Guo H, Xing Y W, Gui X H, Cao Y J 2022J. China Coal Soc. 47 2455(in Chinese) [杨海昌, 郭涵, 邢耀文, 桂夏辉, 曹亦俊2022 煤炭学报 47 2455]
[3] Bao X C, Xing Y W, Zhang F F, Zhang D K, Liu Q S, Yang H C, Gui X H 2024Acta Phys. Sin. 73 036801(in Chinese) [包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉2024 物理学报 73 036801]
[4] Xing Y W, Yang H C, Gui X H, Cao Y J 2024Coal Prep. Technol. 52 1(in Chinese) [邢耀文, 杨海昌, 桂夏辉, 曹亦俊2024 选煤技术 52 1]
[5] Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H 2013 PloS one 8 e65339
[6] Sang H, Jiao X, Wang S, Guo W, Salahou M, Liu K 2018 Plant, Soil and Environment 64
[7] Batagoda J, Aluthgun Hewage S, Meegoda J 2019 Journal of Environmental Engineering and Science 14 1
[8] Xia Z, Hu L, Kusaba S, Song D 2019 pp796-803
[9] Liu G, Craig V S 2009 ACS Appl Mater Interfaces 1 481
[10] Zhu J, An H, Alheshibri M, Liu L, Terpstra P, Liu G, Craig V 2016 Langmuir 32
[11] Yang H, Zeng B, Zhang X, Xing Y, Gui X, Cao Y 2023 Phys. Fluids 35 032108
[12] Zimmerman W B, Tesař V, Bandulasena H 2011 Current Opinion in Colloid & Interface Science - CURR OPIN COLLOID INTERFACE S 16 350
[13] Ljunggren S, Eriksson J C 1997 Colloids and Surfaces A: Physicochemical and Engineering Aspects 129 151
[14] Lou S, Ouyang Z, Yi Z, Li X, Hu J, Li M, Yang F 2000 J. Vac. Sci. Technol. B 18 2573
[15] Ishida N, Inoue T, Miyahara M, Higashitani K 2000 Langmuir 16 6377
[16] Yang H C 2023Ph. D. Dissertation (Xuzhou: China University of Mining and Technology) (in Chinese) [杨海昌2023(徐州: 中国矿业大学)]
[17] Karpitschka S, Dietrich E, Seddon J R, Zandvliet H J, Lohse D, Riegler H 2012 Phys. Rev. Lett. 109 066102
[18] Hain N, Wesner D, Druzhinin S I, Schönherr H 2016 Langmuir 32 11155
[19] Chan C U, Ohl C D 2012 Phys. Rev. Lett. 109 174501
[20] Shin D, Park J B, Kim Y-J, Kim S J, Kang J H, Lee B, Cho S-P, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068
[21] Zhang X, Khan A, Ducker W A 2007 Phys. Rev. Lett. 98 136101
[22] Zhou L, Wang X, Shin H-J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J, Zhang L 2020 J. Am. Chem. Soc. 142 5583
[23] Ducker W A 2009 Langmuir 25 8907
[24] Brenner M P, Lohse D 2008 Phys. Rev. Lett. 101 214505
[25] Lohse D, Zhang X 2015 Phys. Rev. E 91 031003
[26] Tan B H, An H, Ohl C D 2019 Phys. Rev. Lett. 122 134502
[27] Tan B H, An H, Ohl C D 2018 Phys. Rev. Lett. 120 164502
[28] Yang H, Xing Y, Zhang F, Gui X, Cao Y 2024 Fundamental Research 4 35
[29] Wen B, Pan Y, Zhang L, Wang S, Zhou L, Wang C, Hu J 2022 Physical Review Fluids 7 103601
[30] Lan L, Pan Y, Zhou L, Kuang H, Zhang L, Wen B 2025 J. Colloid. Interf. Sci. 678 322
[31] Qian J, Craig V S J, Jehannin M 2019 Langmuir 35 718
[32] Wang X, Zhao B, Ma W, Wang Y, Gao X, Tai R, Zhou X, Zhang L 2015 ChemPhysChem 16 1003
[33] Hampton M A, Donose B C, Nguyen A V 2008 J. Colloid. Interf. Sci. 325 267
[34] An H, Tan B H, Zeng Q, Ohl C-D 2016 Langmuir 32 11212
[35] Zhou L-M, Wang S, Qiu J, Wang L, Wang X-Y, Li B, Zhang L-J, Hu J 2017 Chin. Phys. B 26 106803
[36] Bouwhuis W, van der Veen R C A, Tran T, Keij D L, Winkels K G, Peters I R, van der Meer D, Sun C, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 109 264501
[37] Zou Z-L, Quan N-N, Wang X-Y, Wang S, Zhou L-M, Hu J, Zhang L-J, Dong Y-M 2018 Chin. Phys. B 27 459
[38] Mao M, Zhang J, Yoon R-H, Ducker W A 2004 Langmuir 20 4310
[39] Takata Y, Cho J H J, Law B M, Aratono M 2006 Langmuir 22 1715
[40] Dammer S M, Lohse D 2006 Phys. Rev. Lett. 96 206101
[41] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501
[42] Peng H, Birkett G R, Nguyen A V 2013 Langmuir 29 15266
[43] Xiao Q, Liu Y, Guo Z, Liu Z, Lohse D, Zhang X 2017 Langmuir 33 8090
[44] Zhang Y, Zhu X, Wood J A, Lohse D 2024 Proceedings of the National Academy of Sciences 121 e2321958121
[45] Yang H, Jiang H, Cheng Y, Xing Y, Cao Y, Gui X 2024 J. Mol. Liq. 411
[46] Zhang X, Fan Z, Tong Q, Fu Y 2024 Acta Physica Sinica 73 204701(in Chinese) [张雪松, 范振忠, 仝其雷, 付沅峰2024 物理学报 73 204701]
[47] Wang Z, Yang L, Liu C, Lin S 2023 Chin. Phys. B 32 023101
[48] Yang X, Yang Q, Zhou L, Zhang L, Hu J 2022 Chin. Phys. B 31 054702
[49] Páll S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B, Lindahl E 2020 The Journal of Chemical Physics 153
[50] Liu Y, Zhang X 2014 J. Chem. Phys. 141 134702
[51] Epstein P S, Plesset M S 1950 J. Chem. Phys. 18 1505
[52] Enríquez O R, Sun C, Lohse D, Prosperetti A, van der Meer D 2014 J. Fluid Mech. 741 R1 R1
[53] Enríquez O R, Hummelink C, Bruggert G-W, Lohse D, Prosperetti A, van der Meer D, Sun C 2013 Rev. Sci. Instrum. 84 065111
[54] Dietrich E, Zandvliet H J, Lohse D, Seddon J R 2013 Journal of Physics Condensed Matter 25 184009
[55] Yang H, Zhang F, Xing Y, Gui X, Cao Y 2022 Frontiers in Materials 8
[56] Zhang F, Cai H, Fan G, Gui X, Xing Y, Cao Y 2024 Colloids and Surfaces A: Physicochemical and Engineering Aspects 699 134633
[57] Li C, Zhang Y, Zhang H 2024 Sep. Purif. Technol. 328 125079
[58] Wang C, Lu Y, Feng D, Zhou J, Li Y, Zhang H 2023 Tribology International 177 107940
[59] Li D, Ji Y, Zhang Z, Li Y 2023 Tribology International 190 109037
[60] Vega-Sanchez C, Peppou-Chapman S, Zhu L, Neto C 2022 Nat. Commun. 13 351
[61] Liu G, Wu Z, Craig V S 2008 J. Phys. Chem. C 112 16748
计量
- 文章访问数: 114
- PDF下载量: 1
- 被引次数: 0