-
基于介电液体的两相换热技术已成为大功率电子器件高效热管理的可行方案之一. 然而, 受表面材质和工质热物理性质影响, 介电液体实际应用中存在显著沸腾滞后现象, 进而影响沸腾换热性能. 由于气泡起始成核空间和时间尺度较小且气相压力在相变过程显著波动, 宏观实验和模拟方法仍存在一定局限性. 本研究结合非平衡分子动力学和机械控压方法, 研究R1336mzz(Z)液膜在不同加热表面材质(铜原子、铝原子和硅原子)下的气泡成核及沸腾换热规律. 同时, 从声子振动态密度和势能约束两个方面讨论了介电液体的异相成核机理. 一方面, 以铜原子为代表的高固-液相互作用力、低频振动(<10 THz)表面材料在初始加热阶段可产生较大界面热通量(0.216 × 109 W/m2)且能在壁面附近吸引大量液相分子, 但不可避免提高了起始成核势垒. 另一方面, 相较铝表面(振动重叠度0.151)以硅原子为代表的弱固-液相互作用力、中高频振动表面材料可与介电液体产生合理的声子振动耦合(振动重叠度0.349)以桥接界面热输运, 并降低液膜所受势能约束, 有助于推动局部液体簇形成气泡胚核.Two-phase heat transfer technology utilizing dielectric liquids has emerged as one of the efficient solutions for thermal management in high-power electronic devices. However, in practical applications, due to the interfacial materials and thermophysical properties, dielectric liquids exhibit significant boiling hysteresis, which in turn affects the boiling heat transfer performance. Owing to small spatial and temporal scales of bubble nucleation initiation, macroscopic experiments and traditional simulation methods still face certain limitations. In this study, non-equilibrium molecular dynamics and mechanical pressure control method are utilized to investigate the bubble nucleation and boiling heat transfer characteristics of R1336mzz(Z) liquid film on different heating surface materials (i.e. copper atoms, aluminum atoms, and silicon atoms). Additionally, the heterogeneous nucleation mechanism of dielectric liquid is discussed from two perspectives: phonon vibrational density of states and potential energy restriction. On the one hand, surface materials, represented by copper atoms, with high solid-liquid interaction forces and low-frequency vibrations, can generate substantial interfacial heat flux and attract a large number of liquid-phase molecules near the heated wall. However, such materials inevitably increase the energy barrier of bubble nucleation. On the other hand, surface materials, represented by silicon atoms, with weak solid-liquid interaction forces and medium-to-high-frequency vibrations can achieve reasonable phonon vibrational coupling with dielectric liquid to bridge interfacial thermal transport. Such materials can reduce the potential energy restriction on the nanofilm, thus facilitating the formation of local liquid clusters into bubble nuclei. These findings can provide a comprehensive understanding of the underlying mechanisms of bubble nucleation and heat transfer in dielectric liquids, and thus offer valuable insights into thermal management enhancement strategies in high-power electronic devices.
-
Keywords:
- boiling heat transfer /
- molecular dynamics /
- phonon vibrational density /
- bubble nucleation
[1] Lin X W, Li Y B, Wu W T, Zhou Z F, Chen B 2024 Renew. Sust. Energy Rev. 189 114052
Google Scholar
[2] 许锦阳, 洪芳军, 张朝阳 2024 化工进展 43 5381
Xu J Y, Hong F J, Zhang C Y 2024 Chem. Ind. Eng. Prog. 43 5381
[3] 田兴旺, 徐振涛, 张琨, 陈聪, 徐士鸣 2024 制冷学报 45 17
Google Scholar
Tian X W, Xu Z T, Zhang K, Chen C, Xu S M 2024 J. Refrig. 45 17
Google Scholar
[4] Mao Q, Feng M Y, Jiang X Z, Ren Y H, Luo K H, van Duin A C T 2023 Prog. Energy Combust. Sci. 97 101084
Google Scholar
[5] Lin X W, Wu W T, Li Y B, Jing D W, Chen B, Zhou Z F 2024 Adv. Colloid Interface Sci. 334 103312
Google Scholar
[6] Yabuki T, Nakabeppu O 2014 Int. J. Heat Mass Transfer 76 286
Google Scholar
[7] Zhang X D, Yang G, Cao B Y 2022 Adv. Mater. Interfaces 9 2200078
Google Scholar
[8] 张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 172
Google Scholar
Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 172
Google Scholar
[9] 张石重, 陈占秀, 杨历, 苗瑞灿, 张子剑 2020 化工进展 39 3892
Zhang S Z, Chen Z X, Yang L, Miao R C, Zhang Z J 2020 Chem. Ind. Eng. Prog. 39 3892
[10] 王清, 张子剑, 陈占秀, 刘峰瑞, 庞润宇 2023 原子与分子物理学报 40 47
Wang Q, Zhang Z J, Chen Z X, Liu F R, Pang R Y 2023 J. At. Mol. Phys. 40 47
[11] Datta S, Pillai R, Borg M, Sefiane K 2021 Nano Lett. 21 1267
Google Scholar
[12] Lin X W, Zhu X G, Yin J, Shi M Y, Liu Y, Chen B, Zhou Z F 2024 Int. Commun. Heat Mass Transfer 155 107567
Google Scholar
[13] Bai P, Zhou L P, Huang X N, Du X Z 2021 Int. J. Heat Mass Transfer 175 121391
Google Scholar
[14] Deng X Q, Xu X X, Huang Y F, Duan Y X, Liu C, Dang C B 2024 Int. J. Refrig. 158 35
Google Scholar
[15] Lin X W, Zhang L F, Jiang Y, Liang Y, Zhou Z F 2024 Int. J. Heat Mass Transfer 233 126053
Google Scholar
[16] Cai S Y, Li Q B, Liu C, Zhou Y J 2020 Int. J. Refrig. 113 156-163
Google Scholar
[17] Qian C Y, Yu B B, Ye Z H, Shi J Y, Chen J P 2024 Int. J. Refrig. 157 186
Google Scholar
[18] Su D D, Li X B, Zhang H N, Li F C 2024 Int. J. Heat Mass Transfer 220 124962
Google Scholar
[19] Deng X Q, Xu X X, Song X, Li Q B, Liu C 2023 Appl. Therm. Eng. 219 119682
Google Scholar
[20] Ilic M, Stevanovic V, Milivojevic S, Petrovic M 2021 Int. J. Heat Mass Transfer 172 121141
Google Scholar
[21] Chen Y J, Cao Q, Li J F, Yu B, Tao W Q 2020 J. Mol. Liq. 311 113306
Google Scholar
[22] Xu Z, Huang D, Luo T 2021 J. Phys. Chem. C 125 24115
Google Scholar
[23] Li Z B, Lou J C, Wu X Y, Li X J, Chang F C, Wang H Y, Li H X 2025 J. Mol. Liq. 420 126836
Google Scholar
[24] Raabe G 2015 J. Chem. Eng. Data 60 2412
Google Scholar
[25] Lin X W, Wang Q D, Zhu X G, Shi M Y, Zhou Z F 2024 J. Mol. Liq. 404 124993
Google Scholar
[26] Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018 Micro Nano Lett. 13 351
Google Scholar
[27] Peng P, Liao G L, Shi T L, Tang Z R, Gao Y 2010 Appl. Surf. Sci. 256 6284
Google Scholar
[28] Zhou W J, Li Y, Li M J, Wei J J, Tao W Q 2019 Int. J. Heat Mass Transfer 136 1
Google Scholar
[29] Ma X J, Cheng P, Quan X J 2018 Int. J. Heat Mass Transfer 127 1013
Google Scholar
[30] Xu B, Hu S Q, Hung S W, Shao C, Chandra H, Chen F R, Kodama T, Shiomi J 2021 Sci. Adv. 7 eabf8197
Google Scholar
-
图 10 (a) 铜表面的近壁液膜能量变化; (b) 铜表面的液态层能量变化; (c) 不同表面材质的吸附层势能和动能对比; (d) 不同表面材质的液态层势能和动能对比
Fig. 10. (a) Near-wall liquid film energy variation on copper surface; (b) liquid layer energy variation on copper surface; (c) comparison of potential and kinetic energy of adsorbed layer for different surface materials; (d) comparison of potential and kinetic energy of liquid layer for different surface materials.
-
[1] Lin X W, Li Y B, Wu W T, Zhou Z F, Chen B 2024 Renew. Sust. Energy Rev. 189 114052
Google Scholar
[2] 许锦阳, 洪芳军, 张朝阳 2024 化工进展 43 5381
Xu J Y, Hong F J, Zhang C Y 2024 Chem. Ind. Eng. Prog. 43 5381
[3] 田兴旺, 徐振涛, 张琨, 陈聪, 徐士鸣 2024 制冷学报 45 17
Google Scholar
Tian X W, Xu Z T, Zhang K, Chen C, Xu S M 2024 J. Refrig. 45 17
Google Scholar
[4] Mao Q, Feng M Y, Jiang X Z, Ren Y H, Luo K H, van Duin A C T 2023 Prog. Energy Combust. Sci. 97 101084
Google Scholar
[5] Lin X W, Wu W T, Li Y B, Jing D W, Chen B, Zhou Z F 2024 Adv. Colloid Interface Sci. 334 103312
Google Scholar
[6] Yabuki T, Nakabeppu O 2014 Int. J. Heat Mass Transfer 76 286
Google Scholar
[7] Zhang X D, Yang G, Cao B Y 2022 Adv. Mater. Interfaces 9 2200078
Google Scholar
[8] 张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 172
Google Scholar
Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 172
Google Scholar
[9] 张石重, 陈占秀, 杨历, 苗瑞灿, 张子剑 2020 化工进展 39 3892
Zhang S Z, Chen Z X, Yang L, Miao R C, Zhang Z J 2020 Chem. Ind. Eng. Prog. 39 3892
[10] 王清, 张子剑, 陈占秀, 刘峰瑞, 庞润宇 2023 原子与分子物理学报 40 47
Wang Q, Zhang Z J, Chen Z X, Liu F R, Pang R Y 2023 J. At. Mol. Phys. 40 47
[11] Datta S, Pillai R, Borg M, Sefiane K 2021 Nano Lett. 21 1267
Google Scholar
[12] Lin X W, Zhu X G, Yin J, Shi M Y, Liu Y, Chen B, Zhou Z F 2024 Int. Commun. Heat Mass Transfer 155 107567
Google Scholar
[13] Bai P, Zhou L P, Huang X N, Du X Z 2021 Int. J. Heat Mass Transfer 175 121391
Google Scholar
[14] Deng X Q, Xu X X, Huang Y F, Duan Y X, Liu C, Dang C B 2024 Int. J. Refrig. 158 35
Google Scholar
[15] Lin X W, Zhang L F, Jiang Y, Liang Y, Zhou Z F 2024 Int. J. Heat Mass Transfer 233 126053
Google Scholar
[16] Cai S Y, Li Q B, Liu C, Zhou Y J 2020 Int. J. Refrig. 113 156-163
Google Scholar
[17] Qian C Y, Yu B B, Ye Z H, Shi J Y, Chen J P 2024 Int. J. Refrig. 157 186
Google Scholar
[18] Su D D, Li X B, Zhang H N, Li F C 2024 Int. J. Heat Mass Transfer 220 124962
Google Scholar
[19] Deng X Q, Xu X X, Song X, Li Q B, Liu C 2023 Appl. Therm. Eng. 219 119682
Google Scholar
[20] Ilic M, Stevanovic V, Milivojevic S, Petrovic M 2021 Int. J. Heat Mass Transfer 172 121141
Google Scholar
[21] Chen Y J, Cao Q, Li J F, Yu B, Tao W Q 2020 J. Mol. Liq. 311 113306
Google Scholar
[22] Xu Z, Huang D, Luo T 2021 J. Phys. Chem. C 125 24115
Google Scholar
[23] Li Z B, Lou J C, Wu X Y, Li X J, Chang F C, Wang H Y, Li H X 2025 J. Mol. Liq. 420 126836
Google Scholar
[24] Raabe G 2015 J. Chem. Eng. Data 60 2412
Google Scholar
[25] Lin X W, Wang Q D, Zhu X G, Shi M Y, Zhou Z F 2024 J. Mol. Liq. 404 124993
Google Scholar
[26] Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018 Micro Nano Lett. 13 351
Google Scholar
[27] Peng P, Liao G L, Shi T L, Tang Z R, Gao Y 2010 Appl. Surf. Sci. 256 6284
Google Scholar
[28] Zhou W J, Li Y, Li M J, Wei J J, Tao W Q 2019 Int. J. Heat Mass Transfer 136 1
Google Scholar
[29] Ma X J, Cheng P, Quan X J 2018 Int. J. Heat Mass Transfer 127 1013
Google Scholar
[30] Xu B, Hu S Q, Hung S W, Shao C, Chandra H, Chen F R, Kodama T, Shiomi J 2021 Sci. Adv. 7 eabf8197
Google Scholar
计量
- 文章访问数: 464
- PDF下载量: 8
- 被引次数: 0