-
基于介电液体的两相换热技术已成为大功率电子器件高效热管理的可行方案之一。然而,受表面材质和工质热物理性质影响,介电液体实际应用中存在显著沸腾滞后现象,进而影响沸腾换热性能。由于气泡起始成核空间和时间尺度较小且气相压力在相变过程显著波动,宏观实验和模拟方法仍存在一定局限性。本研究结合非平衡分子动力学和机械控压方法,研究R1336mm (Z)液膜在不同加热表面材质(铜原子、铝原子和硅原子)下的气泡成核及沸腾换热规律。同时,从声子振动态密度和势能约束两个方面讨论了介电液体的异相成核机理。一方面,以铜原子为代表的高固-液相互作用力、低频振动(<10THz)表面材料在初始加热阶段可产生较大界面热通量(0.216×109W/m2)且能在壁面附近吸引大量液相分子,但不可避免提高了起始成核势垒。另一方面,相较铝表面(振动重叠度0.151)以硅原子为代表的弱固-液相互作用力、中高频振动表面材料可与介电液体产生合理的声子振动耦合(振动重叠度0.349)以桥接界面热输运,并降低液膜所受势能约束,有助于推动局部液体簇形成气泡胚核。Two-phase heat transfer technology utilizing dielectric liquids has emerged as one of the efficient solutions for thermal management in high-power electronic devices. However, in practical applications, dielectric liquids exhibit significant boiling hysteresis due to the cause of interfacial materials and thermophysical properties, which in turn affects the boiling heat transfer performance. Owing to small spatial and temporal scales of bubble nucleation initiation, macroscopic experiments and traditional simulation methods still face certain limitations. In this study, non-equilibrium molecular dynamics and mechanical pressure control method are utilized to investigate the bubble nucleation and boiling heat transfer characteristics of R1336mm(Z) liquid film over different heating surface materials (i.e., copper atoms, aluminum atoms, and silicon atoms). Additionally, the heterogeneous nucleation mechanism of dielectric liquid is discussed from two perspectives: phonon vibrational density of states and potential energy restriction. On one hand, surface materials with high solid-liquid interaction forces and low-frequency vibrations, represented by copper atoms, can generate substantial interfacial heat flux and attract a large number of liquid-phase molecules near the heated wall. However, such material inevitably increases the energy barrier of bubble nucleation. On the other hand, surface materials with weak solid-liquid interaction forces and medium-to-high-frequency vibrations, represented by silicon atoms, can achieve reasonable phonon vibrational coupling with dielectric liquid to bridge interfacial thermal transport. Such material can reduce the potential energy restriction on the nanofilm, thus facilitating the formation of local liquid clusters into bubble nuclei. These findings can provide a comprehensive understanding of the underlying mechanisms of bubble nucleation and heat transfer in dielectric liquids and thus offer valuable insights for thermal management enhancement strategies in high-power electronic devices.
-
Keywords:
- Boiling heat transfer /
- Molecular dynamics /
- Phonon vibrational density /
- Bubble nucleation
-
[1] Lin X, Li Y, Wu W, Zhou Z, Chen B. 2024Renewable Sustainable Energy Rev. 189 114052
[2] Xu J, Hong F, Zhang C, 2024, 43: 5381-5392. 2024Chem. Ind. Eng. Prog. 43 5381(in Chinese) [许锦阳,洪芳军,张朝阳2024化工进展43 5381]
[3] Tian X, Xu Z, Zhang K, Chen C, Xu S, 2024 J. Refrig. 4517(in Chinese) [田兴旺,徐振涛,张琨,陈聪,徐士鸣2024制冷学报45 17]
[4] Mao Q, Feng M, Jiang X Z, Ren Y, Luo K H, Duin A. 2023Prog. Energy Combust. Sci. 97 101084
[5] Lin X, Wu W, Li Y, Jing D, Chen B, Zhou Z 2024Adv. Colloid Interface Sci. 334 103312
[6] Yabuki T, Nakabeppu O. 2014Int. J. Heat Mass Transfer 76 286
[7] Zhang X, Yang G, Cao B. 2022Adv. Mater. Interfaces 9 2200078
[8] Zhang L, Xu J, Lei J, 2018Acta Phys. Sin. 67 172(in Chinese) [张龙艳,徐进良,雷俊鹏2018物理学报67 172]
[9] Zhang S, Chen Z, Yang L, Miao R, Zhang Z 2020Chem. Ind. Eng. Prog. 39 3892(in Chinese) [张石重,陈占秀,杨历,苗瑞灿,张子剑2020化工进展39 3892-3899]
[10] Wang Q, Zhang Z, Chen Z, Liu F, Pang R 2023J. At. Mol. Phys. 40 47(in Chinese) [王清,张子剑,陈占秀,刘峰瑞,庞润宇2023原子与分子物理学报40 47]
[11] Datta S, Pillai R, Borg M, Sefiane K 2021Nano Lett. 21 1267
[12] Lin X, Zhu X, Yin J, Shi M, Liu Y, Chen B, Zhou Z 2024Int. Commun. Heat Mass Transfer 155 107567
[13] Bai P, Zhou L, Huang X, Du X 2021Int. J. Heat Mass Transfer 175 121391
[14] Deng C, Xu X, Huang Y, Duan Y, Liu C, Dang C 2024Int. J. Refrig. 158 35
[15] Lin X, Zhang L, Jiang Y, Liang Y, Zhou Z 2024 Int. J. Heat Mass Transfer 233 126053
[16] Cai S, Li Q, Liu C, Zhou Y. 2020Int. J. Refrig. 113 156-163
[17] Qian C, Yu B, Ye Z, Shi J, Chen J. 2024Int. J. Refrig. 157 186-198
[18] Su D, Li X, Zhang H, Li F. 2024Int. J. Heat Mass Transfer 220 124962
[19] Deng X, Xu X, Song X, Li Q, Liu C. 2023. Appl. Therm. Eng. 219 119682
[20] Ilic M, Stevanovic V, Milivojevic S, Petrovic M. 2021Int. J. Heat Mass Transfer 172 121141
[21] Chen Y, Cao Q, Li J, Yu B, Tao W. 2020J. Mol. Liq. 311 113306
[22] Xu Z, Huang D, Luo T. 2021J. Phys. Chem. C 125 24115
[23] Li Z, Lou J, Wu X, Li X, Chang F, Wang H, Li H. 2025J. Mol. Liq. 420 126836
[24] Raabe G 2015J. Chem. Eng. Data 60 2412
[25] Lin X, Wang Q, Zhu X, Shi M, Zhou Z 2024J. Mol. Liq. 404 124993
[26] Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018Micro Nano Lett. 13 351
[27] Peng P, Liao G, Shi T, Tang Z, Gao Y 2010Appl. Surf. Sci. 256 6284
[28] Zhou W, Li Y, Li M, Wei J, Tao W 2019Int. J. Heat Mass Transfer 136 1
[29] Ma X, Cheng P, Quan X. 2018Int. J. Heat Mass Transfer 127 1013
[30] Xu B, Hu S, Hung S, Shao C, Chandra H, Chen F, Kodama T, Shiomi J. 2021Sci. Adv. 7 eabf8197
计量
- 文章访问数: 29
- PDF下载量: 0
- 被引次数: 0