搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面材质对介电液体气泡成核及沸腾换热的微观影响机理

林祥伟 林心怡 黎芷均 向临风 周致富

引用本文:
Citation:

表面材质对介电液体气泡成核及沸腾换热的微观影响机理

林祥伟, 林心怡, 黎芷均, 向临风, 周致富

Molecular insights of surface materials on bubble nucleation and boiling heat transfer of dielectric liquids

LIN Xiangwei, LIN Xinyi, LI Zhijun, XIANG Linfeng, ZHOU Zhifu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于介电液体的两相换热技术已成为大功率电子器件高效热管理的可行方案之一。然而,受表面材质和工质热物理性质影响,介电液体实际应用中存在显著沸腾滞后现象,进而影响沸腾换热性能。由于气泡起始成核空间和时间尺度较小且气相压力在相变过程显著波动,宏观实验和模拟方法仍存在一定局限性。本研究结合非平衡分子动力学和机械控压方法,研究R1336mm (Z)液膜在不同加热表面材质(铜原子、铝原子和硅原子)下的气泡成核及沸腾换热规律。同时,从声子振动态密度和势能约束两个方面讨论了介电液体的异相成核机理。一方面,以铜原子为代表的高固-液相互作用力、低频振动(<10THz)表面材料在初始加热阶段可产生较大界面热通量(0.216×109W/m2)且能在壁面附近吸引大量液相分子,但不可避免提高了起始成核势垒。另一方面,相较铝表面(振动重叠度0.151)以硅原子为代表的弱固-液相互作用力、中高频振动表面材料可与介电液体产生合理的声子振动耦合(振动重叠度0.349)以桥接界面热输运,并降低液膜所受势能约束,有助于推动局部液体簇形成气泡胚核。
    Two-phase heat transfer technology utilizing dielectric liquids has emerged as one of the efficient solutions for thermal management in high-power electronic devices. However, in practical applications, dielectric liquids exhibit significant boiling hysteresis due to the cause of interfacial materials and thermophysical properties, which in turn affects the boiling heat transfer performance. Owing to small spatial and temporal scales of bubble nucleation initiation, macroscopic experiments and traditional simulation methods still face certain limitations. In this study, non-equilibrium molecular dynamics and mechanical pressure control method are utilized to investigate the bubble nucleation and boiling heat transfer characteristics of R1336mm(Z) liquid film over different heating surface materials (i.e., copper atoms, aluminum atoms, and silicon atoms). Additionally, the heterogeneous nucleation mechanism of dielectric liquid is discussed from two perspectives: phonon vibrational density of states and potential energy restriction. On one hand, surface materials with high solid-liquid interaction forces and low-frequency vibrations, represented by copper atoms, can generate substantial interfacial heat flux and attract a large number of liquid-phase molecules near the heated wall. However, such material inevitably increases the energy barrier of bubble nucleation. On the other hand, surface materials with weak solid-liquid interaction forces and medium-to-high-frequency vibrations, represented by silicon atoms, can achieve reasonable phonon vibrational coupling with dielectric liquid to bridge interfacial thermal transport. Such material can reduce the potential energy restriction on the nanofilm, thus facilitating the formation of local liquid clusters into bubble nuclei. These findings can provide a comprehensive understanding of the underlying mechanisms of bubble nucleation and heat transfer in dielectric liquids and thus offer valuable insights for thermal management enhancement strategies in high-power electronic devices.
  • [1]

    Lin X, Li Y, Wu W, Zhou Z, Chen B. 2024Renewable Sustainable Energy Rev. 189 114052

    [2]

    Xu J, Hong F, Zhang C, 2024, 43: 5381-5392. 2024Chem. Ind. Eng. Prog. 43 5381(in Chinese) [许锦阳,洪芳军,张朝阳2024化工进展43 5381]

    [3]

    Tian X, Xu Z, Zhang K, Chen C, Xu S, 2024 J. Refrig. 4517(in Chinese) [田兴旺,徐振涛,张琨,陈聪,徐士鸣2024制冷学报45 17]

    [4]

    Mao Q, Feng M, Jiang X Z, Ren Y, Luo K H, Duin A. 2023Prog. Energy Combust. Sci. 97 101084

    [5]

    Lin X, Wu W, Li Y, Jing D, Chen B, Zhou Z 2024Adv. Colloid Interface Sci. 334 103312

    [6]

    Yabuki T, Nakabeppu O. 2014Int. J. Heat Mass Transfer 76 286

    [7]

    Zhang X, Yang G, Cao B. 2022Adv. Mater. Interfaces 9 2200078

    [8]

    Zhang L, Xu J, Lei J, 2018Acta Phys. Sin. 67 172(in Chinese) [张龙艳,徐进良,雷俊鹏2018物理学报67 172]

    [9]

    Zhang S, Chen Z, Yang L, Miao R, Zhang Z 2020Chem. Ind. Eng. Prog. 39 3892(in Chinese) [张石重,陈占秀,杨历,苗瑞灿,张子剑2020化工进展39 3892-3899]

    [10]

    Wang Q, Zhang Z, Chen Z, Liu F, Pang R 2023J. At. Mol. Phys. 40 47(in Chinese) [王清,张子剑,陈占秀,刘峰瑞,庞润宇2023原子与分子物理学报40 47]

    [11]

    Datta S, Pillai R, Borg M, Sefiane K 2021Nano Lett. 21 1267

    [12]

    Lin X, Zhu X, Yin J, Shi M, Liu Y, Chen B, Zhou Z 2024Int. Commun. Heat Mass Transfer 155 107567

    [13]

    Bai P, Zhou L, Huang X, Du X 2021Int. J. Heat Mass Transfer 175 121391

    [14]

    Deng C, Xu X, Huang Y, Duan Y, Liu C, Dang C 2024Int. J. Refrig. 158 35

    [15]

    Lin X, Zhang L, Jiang Y, Liang Y, Zhou Z 2024 Int. J. Heat Mass Transfer 233 126053

    [16]

    Cai S, Li Q, Liu C, Zhou Y. 2020Int. J. Refrig. 113 156-163

    [17]

    Qian C, Yu B, Ye Z, Shi J, Chen J. 2024Int. J. Refrig. 157 186-198

    [18]

    Su D, Li X, Zhang H, Li F. 2024Int. J. Heat Mass Transfer 220 124962

    [19]

    Deng X, Xu X, Song X, Li Q, Liu C. 2023. Appl. Therm. Eng. 219 119682

    [20]

    Ilic M, Stevanovic V, Milivojevic S, Petrovic M. 2021Int. J. Heat Mass Transfer 172 121141

    [21]

    Chen Y, Cao Q, Li J, Yu B, Tao W. 2020J. Mol. Liq. 311 113306

    [22]

    Xu Z, Huang D, Luo T. 2021J. Phys. Chem. C 125 24115

    [23]

    Li Z, Lou J, Wu X, Li X, Chang F, Wang H, Li H. 2025J. Mol. Liq. 420 126836

    [24]

    Raabe G 2015J. Chem. Eng. Data 60 2412

    [25]

    Lin X, Wang Q, Zhu X, Shi M, Zhou Z 2024J. Mol. Liq. 404 124993

    [26]

    Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018Micro Nano Lett. 13 351

    [27]

    Peng P, Liao G, Shi T, Tang Z, Gao Y 2010Appl. Surf. Sci. 256 6284

    [28]

    Zhou W, Li Y, Li M, Wei J, Tao W 2019Int. J. Heat Mass Transfer 136 1

    [29]

    Ma X, Cheng P, Quan X. 2018Int. J. Heat Mass Transfer 127 1013

    [30]

    Xu B, Hu S, Hung S, Shao C, Chandra H, Chen F, Kodama T, Shiomi J. 2021Sci. Adv. 7 eabf8197

  • [1] 杨欢, 郑雨军. 分子动力学中的几何相位. 物理学报, doi: 10.7498/aps.74.20250388
    [2] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, doi: 10.7498/aps.73.20240323
    [3] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [4] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240026
    [5] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.72.20221815
    [6] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20201861
    [7] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, doi: 10.7498/aps.70.20210058
    [8] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [9] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [10] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191069
    [11] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20190920
    [12] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172193
    [13] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172174
    [14] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, doi: 10.7498/aps.65.210301
    [15] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, doi: 10.7498/aps.64.016202
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [17] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086401
    [18] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, doi: 10.7498/aps.62.123302
    [19] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, doi: 10.7498/aps.62.247101
    [20] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-01

/

返回文章
返回