搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面材质对介电液体气泡成核及沸腾换热的微观影响机理

林祥伟 林心怡 黎芷均 向临风 周致富

引用本文:
Citation:

表面材质对介电液体气泡成核及沸腾换热的微观影响机理

林祥伟, 林心怡, 黎芷均, 向临风, 周致富
cstr: 32037.14.aps.74.20250398

Microscopic influence mechanism of surface material on nucleation and boiling heat transfer of dielectric liquid bubbles

LIN Xiangwei, LIN Xinyi, LI Zhijun, XIANG Linfeng, ZHOU Zhifu
cstr: 32037.14.aps.74.20250398
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于介电液体的两相换热技术已成为大功率电子器件高效热管理的可行方案之一. 然而, 受表面材质和工质热物理性质影响, 介电液体实际应用中存在显著沸腾滞后现象, 进而影响沸腾换热性能. 由于气泡起始成核空间和时间尺度较小且气相压力在相变过程显著波动, 宏观实验和模拟方法仍存在一定局限性. 本研究结合非平衡分子动力学和机械控压方法, 研究R1336mzz(Z)液膜在不同加热表面材质(铜原子、铝原子和硅原子)下的气泡成核及沸腾换热规律. 同时, 从声子振动态密度和势能约束两个方面讨论了介电液体的异相成核机理. 一方面, 以铜原子为代表的高固-液相互作用力、低频振动(<10 THz)表面材料在初始加热阶段可产生较大界面热通量(0.216 × 109 W/m2)且能在壁面附近吸引大量液相分子, 但不可避免提高了起始成核势垒. 另一方面, 相较铝表面(振动重叠度0.151)以硅原子为代表的弱固-液相互作用力、中高频振动表面材料可与介电液体产生合理的声子振动耦合(振动重叠度0.349)以桥接界面热输运, 并降低液膜所受势能约束, 有助于推动局部液体簇形成气泡胚核.
    Two-phase heat transfer technology utilizing dielectric liquids has emerged as one of the efficient solutions for thermal management in high-power electronic devices. However, in practical applications, due to the interfacial materials and thermophysical properties, dielectric liquids exhibit significant boiling hysteresis, which in turn affects the boiling heat transfer performance. Owing to small spatial and temporal scales of bubble nucleation initiation, macroscopic experiments and traditional simulation methods still face certain limitations. In this study, non-equilibrium molecular dynamics and mechanical pressure control method are utilized to investigate the bubble nucleation and boiling heat transfer characteristics of R1336mzz(Z) liquid film on different heating surface materials (i.e. copper atoms, aluminum atoms, and silicon atoms). Additionally, the heterogeneous nucleation mechanism of dielectric liquid is discussed from two perspectives: phonon vibrational density of states and potential energy restriction. On the one hand, surface materials, represented by copper atoms, with high solid-liquid interaction forces and low-frequency vibrations, can generate substantial interfacial heat flux and attract a large number of liquid-phase molecules near the heated wall. However, such materials inevitably increase the energy barrier of bubble nucleation. On the other hand, surface materials, represented by silicon atoms, with weak solid-liquid interaction forces and medium-to-high-frequency vibrations can achieve reasonable phonon vibrational coupling with dielectric liquid to bridge interfacial thermal transport. Such materials can reduce the potential energy restriction on the nanofilm, thus facilitating the formation of local liquid clusters into bubble nuclei. These findings can provide a comprehensive understanding of the underlying mechanisms of bubble nucleation and heat transfer in dielectric liquids, and thus offer valuable insights into thermal management enhancement strategies in high-power electronic devices.
      通信作者: 周致富, zfzhou@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52176163)、陕西省杰出青年基金(批准号: 2024JC-JCQN-58)和陕西省高校联合项目(批准号: 2023GXLH-003)资助的课题.
      Corresponding author: ZHOU Zhifu, zfzhou@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176163), the Fund for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2024JC-JCQN-58), and the Program of Colleges and Universities of Shaanxi Province, China (Grant No. 2023GXLH-003).
    [1]

    Lin X W, Li Y B, Wu W T, Zhou Z F, Chen B 2024 Renew. Sust. Energy Rev. 189 114052Google Scholar

    [2]

    许锦阳, 洪芳军, 张朝阳 2024 化工进展 43 5381

    Xu J Y, Hong F J, Zhang C Y 2024 Chem. Ind. Eng. Prog. 43 5381

    [3]

    田兴旺, 徐振涛, 张琨, 陈聪, 徐士鸣 2024 制冷学报 45 17Google Scholar

    Tian X W, Xu Z T, Zhang K, Chen C, Xu S M 2024 J. Refrig. 45 17Google Scholar

    [4]

    Mao Q, Feng M Y, Jiang X Z, Ren Y H, Luo K H, van Duin A C T 2023 Prog. Energy Combust. Sci. 97 101084Google Scholar

    [5]

    Lin X W, Wu W T, Li Y B, Jing D W, Chen B, Zhou Z F 2024 Adv. Colloid Interface Sci. 334 103312Google Scholar

    [6]

    Yabuki T, Nakabeppu O 2014 Int. J. Heat Mass Transfer 76 286Google Scholar

    [7]

    Zhang X D, Yang G, Cao B Y 2022 Adv. Mater. Interfaces 9 2200078Google Scholar

    [8]

    张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 172Google Scholar

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 172Google Scholar

    [9]

    张石重, 陈占秀, 杨历, 苗瑞灿, 张子剑 2020 化工进展 39 3892

    Zhang S Z, Chen Z X, Yang L, Miao R C, Zhang Z J 2020 Chem. Ind. Eng. Prog. 39 3892

    [10]

    王清, 张子剑, 陈占秀, 刘峰瑞, 庞润宇 2023 原子与分子物理学报 40 47

    Wang Q, Zhang Z J, Chen Z X, Liu F R, Pang R Y 2023 J. At. Mol. Phys. 40 47

    [11]

    Datta S, Pillai R, Borg M, Sefiane K 2021 Nano Lett. 21 1267Google Scholar

    [12]

    Lin X W, Zhu X G, Yin J, Shi M Y, Liu Y, Chen B, Zhou Z F 2024 Int. Commun. Heat Mass Transfer 155 107567Google Scholar

    [13]

    Bai P, Zhou L P, Huang X N, Du X Z 2021 Int. J. Heat Mass Transfer 175 121391Google Scholar

    [14]

    Deng X Q, Xu X X, Huang Y F, Duan Y X, Liu C, Dang C B 2024 Int. J. Refrig. 158 35Google Scholar

    [15]

    Lin X W, Zhang L F, Jiang Y, Liang Y, Zhou Z F 2024 Int. J. Heat Mass Transfer 233 126053Google Scholar

    [16]

    Cai S Y, Li Q B, Liu C, Zhou Y J 2020 Int. J. Refrig. 113 156-163Google Scholar

    [17]

    Qian C Y, Yu B B, Ye Z H, Shi J Y, Chen J P 2024 Int. J. Refrig. 157 186Google Scholar

    [18]

    Su D D, Li X B, Zhang H N, Li F C 2024 Int. J. Heat Mass Transfer 220 124962Google Scholar

    [19]

    Deng X Q, Xu X X, Song X, Li Q B, Liu C 2023 Appl. Therm. Eng. 219 119682Google Scholar

    [20]

    Ilic M, Stevanovic V, Milivojevic S, Petrovic M 2021 Int. J. Heat Mass Transfer 172 121141Google Scholar

    [21]

    Chen Y J, Cao Q, Li J F, Yu B, Tao W Q 2020 J. Mol. Liq. 311 113306Google Scholar

    [22]

    Xu Z, Huang D, Luo T 2021 J. Phys. Chem. C 125 24115Google Scholar

    [23]

    Li Z B, Lou J C, Wu X Y, Li X J, Chang F C, Wang H Y, Li H X 2025 J. Mol. Liq. 420 126836Google Scholar

    [24]

    Raabe G 2015 J. Chem. Eng. Data 60 2412Google Scholar

    [25]

    Lin X W, Wang Q D, Zhu X G, Shi M Y, Zhou Z F 2024 J. Mol. Liq. 404 124993Google Scholar

    [26]

    Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018 Micro Nano Lett. 13 351Google Scholar

    [27]

    Peng P, Liao G L, Shi T L, Tang Z R, Gao Y 2010 Appl. Surf. Sci. 256 6284Google Scholar

    [28]

    Zhou W J, Li Y, Li M J, Wei J J, Tao W Q 2019 Int. J. Heat Mass Transfer 136 1Google Scholar

    [29]

    Ma X J, Cheng P, Quan X J 2018 Int. J. Heat Mass Transfer 127 1013Google Scholar

    [30]

    Xu B, Hu S Q, Hung S W, Shao C, Chandra H, Chen F R, Kodama T, Shiomi J 2021 Sci. Adv. 7 eabf8197Google Scholar

  • 图 1  分子体系的初始构型

    Fig. 1.  Initial configuration of the molecular system.

    图 2  平衡过程中铜表面液膜温度和总能耗演化

    Fig. 2.  Evolution of film temperature and total energy on copper wall during equilibrium process.

    图 3  不同表面材质下R1336mzz(Z)液膜的相变过程

    Fig. 3.  Phase change process of R1336mzz(Z) liquid film under different surface materials.

    图 4  不同表面材质下液膜质量中心演化

    Fig. 4.  Evolution of the liquid film center of mass with different surface materials.

    图 5  液膜平均温度变化

    Fig. 5.  Evolution of the average temperature of nanofilm.

    图 6  不同表面材质下液膜热流密度对比

    Fig. 6.  Comparison of heat fluxes of liquid film with different surface materials.

    图 7  不同表面材质下固-液界面热阻对比

    Fig. 7.  Comparison of interfacial resistances of liquid film with different surface materials.

    图 8  铜表面液膜在3.17 ns时刻 (a) 数密度分布和 (b) 总能量分布

    Fig. 8.  (a) Number density distribution and (b) total energy distribution of the liquid film on the copper surface at moment of 3.17 ns.

    图 9  不同表面材质和R1336mzz(Z)的振动态密度对比

    Fig. 9.  Comparison of vibrational density of state with different surface materials and nanofilm.

    图 10  (a) 铜表面的近壁液膜能量变化; (b) 铜表面的液态层能量变化; (c) 不同表面材质的吸附层势能和动能对比; (d) 不同表面材质的液态层势能和动能对比

    Fig. 10.  (a) Near-wall liquid film energy variation on copper surface; (b) liquid layer energy variation on copper surface; (c) comparison of potential and kinetic energy of adsorbed layer for different surface materials; (d) comparison of potential and kinetic energy of liquid layer for different surface materials.

    图 11  微纳尺度异相成核及沸腾换热影响机制示意图

    Fig. 11.  Schematic diagram of the mechanism of heterogeneous nucleation and boiling heat transfer at microscale.

  • [1]

    Lin X W, Li Y B, Wu W T, Zhou Z F, Chen B 2024 Renew. Sust. Energy Rev. 189 114052Google Scholar

    [2]

    许锦阳, 洪芳军, 张朝阳 2024 化工进展 43 5381

    Xu J Y, Hong F J, Zhang C Y 2024 Chem. Ind. Eng. Prog. 43 5381

    [3]

    田兴旺, 徐振涛, 张琨, 陈聪, 徐士鸣 2024 制冷学报 45 17Google Scholar

    Tian X W, Xu Z T, Zhang K, Chen C, Xu S M 2024 J. Refrig. 45 17Google Scholar

    [4]

    Mao Q, Feng M Y, Jiang X Z, Ren Y H, Luo K H, van Duin A C T 2023 Prog. Energy Combust. Sci. 97 101084Google Scholar

    [5]

    Lin X W, Wu W T, Li Y B, Jing D W, Chen B, Zhou Z F 2024 Adv. Colloid Interface Sci. 334 103312Google Scholar

    [6]

    Yabuki T, Nakabeppu O 2014 Int. J. Heat Mass Transfer 76 286Google Scholar

    [7]

    Zhang X D, Yang G, Cao B Y 2022 Adv. Mater. Interfaces 9 2200078Google Scholar

    [8]

    张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 172Google Scholar

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 172Google Scholar

    [9]

    张石重, 陈占秀, 杨历, 苗瑞灿, 张子剑 2020 化工进展 39 3892

    Zhang S Z, Chen Z X, Yang L, Miao R C, Zhang Z J 2020 Chem. Ind. Eng. Prog. 39 3892

    [10]

    王清, 张子剑, 陈占秀, 刘峰瑞, 庞润宇 2023 原子与分子物理学报 40 47

    Wang Q, Zhang Z J, Chen Z X, Liu F R, Pang R Y 2023 J. At. Mol. Phys. 40 47

    [11]

    Datta S, Pillai R, Borg M, Sefiane K 2021 Nano Lett. 21 1267Google Scholar

    [12]

    Lin X W, Zhu X G, Yin J, Shi M Y, Liu Y, Chen B, Zhou Z F 2024 Int. Commun. Heat Mass Transfer 155 107567Google Scholar

    [13]

    Bai P, Zhou L P, Huang X N, Du X Z 2021 Int. J. Heat Mass Transfer 175 121391Google Scholar

    [14]

    Deng X Q, Xu X X, Huang Y F, Duan Y X, Liu C, Dang C B 2024 Int. J. Refrig. 158 35Google Scholar

    [15]

    Lin X W, Zhang L F, Jiang Y, Liang Y, Zhou Z F 2024 Int. J. Heat Mass Transfer 233 126053Google Scholar

    [16]

    Cai S Y, Li Q B, Liu C, Zhou Y J 2020 Int. J. Refrig. 113 156-163Google Scholar

    [17]

    Qian C Y, Yu B B, Ye Z H, Shi J Y, Chen J P 2024 Int. J. Refrig. 157 186Google Scholar

    [18]

    Su D D, Li X B, Zhang H N, Li F C 2024 Int. J. Heat Mass Transfer 220 124962Google Scholar

    [19]

    Deng X Q, Xu X X, Song X, Li Q B, Liu C 2023 Appl. Therm. Eng. 219 119682Google Scholar

    [20]

    Ilic M, Stevanovic V, Milivojevic S, Petrovic M 2021 Int. J. Heat Mass Transfer 172 121141Google Scholar

    [21]

    Chen Y J, Cao Q, Li J F, Yu B, Tao W Q 2020 J. Mol. Liq. 311 113306Google Scholar

    [22]

    Xu Z, Huang D, Luo T 2021 J. Phys. Chem. C 125 24115Google Scholar

    [23]

    Li Z B, Lou J C, Wu X Y, Li X J, Chang F C, Wang H Y, Li H X 2025 J. Mol. Liq. 420 126836Google Scholar

    [24]

    Raabe G 2015 J. Chem. Eng. Data 60 2412Google Scholar

    [25]

    Lin X W, Wang Q D, Zhu X G, Shi M Y, Zhou Z F 2024 J. Mol. Liq. 404 124993Google Scholar

    [26]

    Hasan M, Shavik S, Mukut K, Rabbi K, Faisal A 2018 Micro Nano Lett. 13 351Google Scholar

    [27]

    Peng P, Liao G L, Shi T L, Tang Z R, Gao Y 2010 Appl. Surf. Sci. 256 6284Google Scholar

    [28]

    Zhou W J, Li Y, Li M J, Wei J J, Tao W Q 2019 Int. J. Heat Mass Transfer 136 1Google Scholar

    [29]

    Ma X J, Cheng P, Quan X J 2018 Int. J. Heat Mass Transfer 127 1013Google Scholar

    [30]

    Xu B, Hu S Q, Hung S W, Shao C, Chandra H, Chen F R, Kodama T, Shiomi J 2021 Sci. Adv. 7 eabf8197Google Scholar

  • [1] 杨欢, 郑雨军. 分子动力学中的几何相位. 物理学报, 2025, 74(15): 150201. doi: 10.7498/aps.74.20250388
    [2] 郑子超, 李志康, 桑丽霞. 等离激元金属-半导体复合电极的界面声子热输运特性. 物理学报, 2025, 74(19): . doi: 10.7498/aps.74.20250683
    [3] 余绵, 李丙衡, 孟祥文, 吴连锋, 马连湘, 唐元政. 不同润湿条件下带正弦凸起粗糙表面上汽泡成核的分子动力学研究. 物理学报, 2025, 74(20): . doi: 10.7498/aps.74.20250717
    [4] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [5] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [6] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [7] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [8] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [9] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [10] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [11] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [12] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [13] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [14] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [15] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [18] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [19] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [20] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
计量
  • 文章访问数:  464
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-06-05
  • 上网日期:  2025-07-01
  • 刊出日期:  2025-09-05

/

返回文章
返回