-
本文基于密度泛函理论和玻尔兹曼输运方程,计算了α-U在不同压强下的声子色散关系及其热导率。计算结果表明α-U在压力高达80 GPa下仍保持动力学稳定性,通过准谐近似得到的α-U物态方程也与计算值和实验值相吻合,其热导率随温度的升高而先减小后增大,呈现出典型的"V"形特征。在低温区,声子热导较大,占主导地位且随温度呈递减趋势,压强的增大会使得格林艾森参数、声子群速度以及声子寿命发生变化进而影响晶格热导率。而在高温区,电子热导较大且随温度的升高而升高,二者共同导致了热导率在160 K附近存在极小值,反映了声子-电子热输运协同作用的微观机制。在300 K,0 GPa下,总热导率为25.11 W/(m·K),在80 GPa下的热导率上升到250.75 W/(m·K),表明压强对α铀热输运性质有着重要的影响。Through first-principles calculations based on Density Functional Theory (DFT) and the Boltzmann Transport Equation (BTE), we investigated the thermal transport properties of α-uranium under high pressure. In order to investigate the effect of pressure on the phonon dispersion relations and thermal conductivity of α-U, the phonon dispersion relations and lattice thermal conductivity at different pressures were calculated using a 4×4×4 supercell. For the calculation of electronic thermal conductivity, the ratio of conductivity to relaxation time is first calculated using the Boltzmann Transport Equation. Then, the relaxation time is calculated using deformation potential energy theory, relaxation time approximation, and effective mass approximation method derived from DFT band structure. Finally, the electronic thermal conductivity is obtained through the Wiedemann-Franz law. The calculation results indicate that α-U remains dynamically stable under a pressure of 80 GPa.The thermal conductivity of α-U exhibits a typical "V"-shaped temperature dependence: at low temperatures, phonon thermal conductivity dominates and decreases with increasing temperature; At high temperatures, the electronic thermal conductivity becomes more significant and increases with increasing temperature. The combined effect of phonon thermal conductivity and electron thermal conductivity results in the total thermal conductivity reaching its minimum value at a temperature of approximately 160 K. When the temperature is 300 K, the thermal conductivity of α-U at 0 GPa is 25.11 W/(m·K), and increases to 250.75 W/(m·K) at 80 GPa with increasing pressure. This result clearly indicates that an increase in pressure significantly enhances thermal conductivity. The calculation results also highlight the influence of pressure on phonon group velocity, phonon lifetime, and electron phonon interactions, all of which promote an increase in thermal conductivity. These findings provide a comprehensive understanding of the temperature and pressure dependent thermal conductivity behavior of α-U, and offer valuable insights for potential applications in extreme environments.
-
Keywords:
- uranium /
- Phonon dispersion relation /
- Lattice thermal conductivity /
- Electronic thermal conductivity
-
[1] Jacob C W, Warren B E 1937 J. Am. Chem. Soc. 59 2588
[2] Tucker C W 1951 Acta Crystallogr. 4 425
[3] Lawson A C, Olsen C E, Richardson J W 1988 Acta Crystallogr. B 44 89
[4] Wilson A S,Rundle R E 1949 Acta Crystallogr. 2 126.
[5] Le Bihan T, Heathman S, Idiri M 2003 Phys. Rev. B 67 134102
[6] Liu B Q, Xie L, Duan X X, Sun G A, Chen B, Song J M, Liu Y G, Wang X L 2013 Acta Phys. Sin. 62 176104(in Chinese) [刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳 2013物理学报 62 176104]
[7] Wills J M, Eriksson O 1992 Phys. Rev. B 45 13879
[8] Söderlind P 2002 Phys. Rev. B 66 085113
[9] Zhang Q L, Zhao Y H, Ma G C 2014 J. High Press. Phys. 30 32(in Chinese) [张其黎,赵艳红, 马桂存. 2014 高压物理学报 30 32]
[10] Yin W Q, Bo T, Zhao Y B, Zhang L, Chai Z F, Shi W Q 2024 J. Nucl. Chem. Radiochem. 46 450 (in Chinese) [尹晚秋,薄涛, 赵玉宝, 张蕾, 柴之芳, 石伟群 2024 核化学与放射化学 46 450]
[11] Fisher E S, McSkimin H J 1958 J. Appl. Phys. 29 1473
[12] Bouchet J, Albers R C 2011 J. Phys.: Condens. Matter 23 215402
[13] Yang J W, Gao T, Liu B Q, Sun G A, Chen B 2014 Eur. Phys. J. B 87 130.
[14] Söderlind P, Yang L H, Landa A, Wu A 2021 Appl. Sci. 11 5643.
[15] Crummett W P, Morris J A, Baker A R 1979 Phys. Rev. B 19 6028
[16] Manley M E, Jarman T L, Cooper R A 2003 Phys. Rev. B 67 052302
[17] Yang J W, Shi S J, Li X P 2015 J. Nucl. Mater. 252 521
[18] Bouchet J, Bottin F J 2017 Phys. Rev. B 95 054113
[19] Eriksen V O, Halg W 1955 J. Nucl. Mater. 1 232
[20] Pearson G J D, Danielson G C 1957 Proc. Iowa Acad. Sci. 64 461
[21] Takahashi Y, Yamawaki M, Yamamoto K 1988 J. Nucl. Mater. 154 141
[22] Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG,Singh RP 2012 J. Nucl. Mater. 427 1
[23] Zhou S X,Jacobs R, Xie W, Tea E, Hin C, Morgan D 2018 Phys. Rev. Mater. 2 083401
[24] Peng J, Deskins W. R, Malakkal L, El-Azab A 2021 J. Appl. Phys. 130 185101
[25] Jian D 2020 M. S. Thesis Mianyang: China Academy of Engineering Physics (in Chinese) [简单 2020 硕士学位论文 绵阳: 中国工程物理研究院]
[26] Richard N, Hall R O, Lee J A 2002 Phys. Rev. B 66 235112
[27] Söderlind P, Zhang Z, Anderson O 1994 Phys. Rev. B 50 7291
[28] Lan G, Zhang T, Li Y 2016 J. Appl. Phys. 119 235901
[29] Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747
[30] Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67
[31] Bardeen J, Shockley W 1950 Phys. Rev. 80 72
[32] Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348
[33] Ziman J M 2001 Electrons and Phonons (Oxford University Press)
[34] Hashin Z, Shtrikman S 1963 Phys. Rev. 130 129
[35] Kruglov I A, Yanilkin A, Oganov AR, Korotaev P 2019 Phys. Rev. B 100 174104
[36] Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202
[37] Akella J, Gupta Y, Luthra G 1990 High Press. Res. 2 295
[38] Birch F 1952 J. Geophys. Res. 57 227
[39] Bouchet J 2008 Phys. Rev. B 77 024113
[40] Ren Z Y, Liu L, Zhang Q 2016 J. Nucl. Mater. 480 80
[41] Yoo C S, Cynn H, Söderlind P 1998 Phys. Rev. B 57 10359
[42] Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202
[43] Raetsky V M 1967 J. Nucl. Mater. 21 105
[44] Pascal J, Morin J, Lacombe P 1964 J. Nucl. Mater. 13 28
[45] Touloukian Y S, Bass R L, Shapiro S M 1970 Thermophysical Properties of Matter (TPRC Data Series) (Vol. 1) (New York: IFI/Plenum)
[46] Hall R O A, Lee J A 1971 J. Low Temp. Phys. 4 415
[47] Howl D A 1966 J. Nucl. Mater. 19 9
计量
- 文章访问数: 28
- PDF下载量: 0
- 被引次数: 0