搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变声速弹性沉积层下压缩波与剪切波的耦合影响

刘亚琴 杨士莪 张海刚 王笑寒

引用本文:
Citation:

变声速弹性沉积层下压缩波与剪切波的耦合影响

刘亚琴, 杨士莪, 张海刚, 王笑寒

Compressional-shear wave coupling induced by velocity gradient in elastic medium

Liu Ya-Qin, Yang Shi-E, Zhang Hai-Gang, Wang Xiao-Han
PDF
导出引用
  • 针对压缩波声速n2线性分布、剪切波声速平方线性分布的变参数弹性海底沉积层中声场建模问题,建立了关于压缩波与剪切波本征函数的偏微分耦合方程组,基于微扰法,通过逐次微分给出了本征函数的近似解析解.理论分析表明,只有剪切波声速平方的梯度不为零的情况下,沉积层中的压缩波才会与剪切波产生耦合.压缩波与剪切波耦合的影响会带来本征值的变化,其对近场声传播的影响较小,但远距离声传播损失的预报在考虑耦合后与实测数据符合得更好.此外,耦合还会导致沉积层中本征函数及其导数的变化,使得耦合与非耦合情况下沉积层中质点位移场不同.通过与商用声场软件COMSOL计算结果的对比分析检验了本文方法的正确性,且本文方法计算时间远小于COMSOL软件运行时间.
    In the real ocean environment, the compressional and shear wave velocities in an elastic sediment layer vary with depth, leading to the coupling between compressional and shear waves. As the coupling will affect the underwater sound field, in this paper, a typical sound velocity distribution (where the compression wave velocity has an n2 linear distribution and the square of shear wave velocity has a linear distribution) is analyzed. Based on the wave equation in inhomogeneous elastic medium, coupled equations of wavenumber kernels of scalar and vector potential functions are established. Based on the perturbation method, approximate analytical solutions of integration kernels are acquired by successive differentiation. The comparison between theoretical prediction and experimental data, which are from the pressure sensor of ocean-bottom seismometer (OBS) consisting of three orthogonal hydrophones and one hydrophone, located at the bottom of the sea near Qingdao City, shows that the coupling between shear wave and compression wave has little effect on near-field sound propagation, while the prediction of long-range sound propagation needs to consider the influence of eigenvalue change caused by coupling. Theoretic analysis shows that there will be coupling between the two waves only if the gradient, σ, of the square of the shear wave velocity is nonzero. When α, the gradient of the reciprocal of the square of the compression wave velocity, becomes larger, and σ remains unchanged, the simulation results show that the change of the eigenvalue is very small when considering the coupling effect. Thus, transmission loss curves calculated by the coupled and uncoupled algorithm are almost the same. When σ becomes larger while α remains unchanged, the simulation results show that eigenvalues are changed to some extent if considering the coupling effect, and that the difference between transmission loss calculated by the coupled and uncoupled algorithms increases. That means the effect of σ value on coupling is greater than that of α value. In addition, the coupling between the compression wave and shear wave can lead the eigenfunctions and derivative eigenfunctions in the sediment to change. The horizontal displacement and vertical displacement are the Fourier-Bessel integral functions of eigenfunctions and derivative eigenfunctions. So the displacement field of particle in the sediment layer is different in the coupled case from that in the uncoupled cases. By comparing the transmission loss of sound pressure simulated by COMSOL software and that obtained from our proposed method, the correctness of the proposed method is verified. And the calculation time is much shorter than the calculation time by using COMSOL software.
    • 基金项目: 国家自然科学基金重点项目(批准号:11234002)、国家重点研发计划(批准号:2016YFC1400100)和国家自然科学基金(批准号:11474073)资助的课题.
    • Funds: Project supported by the the Key Program of the National Natural Science Foundation of China (Grant No. 11234002), the National Key Research and Develop Program of China (Grant No. 2016YFC1400100), and the National Natural Science Foundation of China (Grant No. 11474073).
    [1]

    Godin O A, Chapman D M F 2001 J. Acoust. Soc. Am. 110 1890

    [2]

    Godin O A, Chapman D M F 1999 J. Acoust. Soc. Am. 106 2367

    [3]

    Chapman D M F, Godin O A 2001 J. Acoust. Soc. Am. 110 1908

    [4]

    Greene J, Giard J, Potty G R, Miller J H 2011 International Symposium on Ocean Electronics Kochi, India, November 16-18, 2011 p211

    [5]

    Soloway A G, Dahl P H, Odom R I 2015 J. Acoust. Soc. Am. 138 EL370

    [6]

    Hall M V 1995 J. Acoust. Soc. Am. 98 1075

    [7]

    Fryer G J 1981 J. Acoust. Soc. Am. 69 647

    [8]

    Liu J Y, Tsai S H, Wang C C, Chu C R 2004 J. Sound Vib. 275 739

    [9]

    Liu J Y, Tsai S H, Lin I C 2004 Ocean Eng. 31 417

    [10]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (New York: Mcgraw-Hill Book Company) pp328-330

    [11]

    Karal F C, Keller J B 1959 J. Acoust. Soc. Am. 31 694

    [12]

    Hook J F 1961 J. Acoust. Soc. Am. 33 302

    [13]

    Scholte J G J 1961 Geophys. Prospect. 9 86

    [14]

    Gupta R N 1966 B. Seismol. Soc. Am. 56 511

    [15]

    Vidmar P J, Foreman T L 1979 J. Acoust. Soc. Am. 66 1830

    [16]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

    [17]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp24-25

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2012 Computational Ocean Acoustics (New York: Springer New York) pp265-266

  • [1]

    Godin O A, Chapman D M F 2001 J. Acoust. Soc. Am. 110 1890

    [2]

    Godin O A, Chapman D M F 1999 J. Acoust. Soc. Am. 106 2367

    [3]

    Chapman D M F, Godin O A 2001 J. Acoust. Soc. Am. 110 1908

    [4]

    Greene J, Giard J, Potty G R, Miller J H 2011 International Symposium on Ocean Electronics Kochi, India, November 16-18, 2011 p211

    [5]

    Soloway A G, Dahl P H, Odom R I 2015 J. Acoust. Soc. Am. 138 EL370

    [6]

    Hall M V 1995 J. Acoust. Soc. Am. 98 1075

    [7]

    Fryer G J 1981 J. Acoust. Soc. Am. 69 647

    [8]

    Liu J Y, Tsai S H, Wang C C, Chu C R 2004 J. Sound Vib. 275 739

    [9]

    Liu J Y, Tsai S H, Lin I C 2004 Ocean Eng. 31 417

    [10]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (New York: Mcgraw-Hill Book Company) pp328-330

    [11]

    Karal F C, Keller J B 1959 J. Acoust. Soc. Am. 31 694

    [12]

    Hook J F 1961 J. Acoust. Soc. Am. 33 302

    [13]

    Scholte J G J 1961 Geophys. Prospect. 9 86

    [14]

    Gupta R N 1966 B. Seismol. Soc. Am. 56 511

    [15]

    Vidmar P J, Foreman T L 1979 J. Acoust. Soc. Am. 66 1830

    [16]

    Westwood E K, Tindle C T, Chapman N R 1996 J. Acoust. Soc. Am. 100 3631

    [17]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp24-25

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2012 Computational Ocean Acoustics (New York: Springer New York) pp265-266

  • [1] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [2] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [3] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [4] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析. 物理学报, 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [5] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [6] 延凤平, 刘鹏, 谭中伟, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法. 物理学报, 2012, 61(16): 164202. doi: 10.7498/aps.61.164202
    [7] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [8] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [9] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [10] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究. 物理学报, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [11] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [12] 张荣, 徐振源, 杨永清. 通过同步实现"有序+有序=混沌"的例子. 物理学报, 2011, 60(1): 010515. doi: 10.7498/aps.60.010515
    [13] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化. 物理学报, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [14] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [15] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为. 物理学报, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [16] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究. 物理学报, 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
    [17] 刘勇. 耦合系统的混沌相位同步. 物理学报, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [18] 张琪昌, 田瑞兰, 王 炜. 一类机电耦合非线性动力系统的混沌动力学特征. 物理学报, 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [19] 刘振泽, 田彦涛, 宋 彦. 基于线性耦合下混沌系统的同步条件. 物理学报, 2006, 55(8): 3945-3949. doi: 10.7498/aps.55.3945
    [20] 刘敬伟, 陈少武, 余金中. 一种分析三维楔脊形光波导与光纤耦合的方法. 物理学报, 2005, 54(1): 6-11. doi: 10.7498/aps.54.6
计量
  • 文章访问数:  6511
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-09-27
  • 刊出日期:  2018-12-05

/

返回文章
返回