搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维平面激波折射的理论计算方法

贾雷明 王智环 王澍霏 钟巍 田宙

引用本文:
Citation:

二维平面激波折射的理论计算方法

贾雷明, 王智环, 王澍霏, 钟巍, 田宙

On theoretical calculation method for two-dimensional planar shock wave refractions

Jia Lei-Ming, Wang Zhi-Huan, Wang Shu-Fei, Zhong Wei, Tian Zhou
PDF
HTML
导出引用
  • 围绕二维平面激波与物质界面作用, 建立了流场波系结构的理论计算方法. 首先分析了界面两侧激波独自沿界面传播过程, 识别了两类正规折射和三类非正规折射; 然后, 根据两侧扰动沿界面传播的相对快慢, 得到了三种不同的作用情形. 与已有的Catherasoo方法相比, 此方法: 1) 考虑了激波波后紧邻波阵面流场中扰动对界面附近折射的影响, 区分了扰动的强弱及其是否可以追赶上激波阵面; 2) 除了少数情形外, 大都基于Euler方程精确解描述流场中波系相互作用. 利用该方法对马赫数1.17的激波与空气/SF6界面作用进行计算, 得到的波系结构与数值结果、已有实验数据基本一致, 透射波阵面与水平方向夹角吻合程度优于Catherasoo结果; 给出了反射波参数、界面偏折角度等, 而Catherasoo方法不能计算这些参数. 对于马赫数2.00的激波, 通过比较不同介质密度比和界面倾角下的理论与数值结果, 发现此方法对波系类型的识别比Catherasoo方法更为准确, 且识别了波后强扰动追赶上激波形成三波结构的折射类型, 后者无法识别此类型. 上述结果表明, 新方法具有良好的适用性, 对波系类型的识别较已有方法的准确度更高, 可获取更为丰富的波系结构信息.
    A theoretical calculation method for wave structures in the flow resulting from the interaction between the two-dimensional planar shock and the material interface is developed. First, the propagation of the shock wave on either side of the interface is analyzed, and two regular refraction types and three irregular ones are identified. Then, according to the relative speed of the perturbations on either side, three different interaction cases are established. Compared with the existing Catherasoo’s method, this method is improved in the following aspects: 1) the influence of the perturbation in the post-shock flow field on the interaction is taken into account, including its type and whether it can catch up and interact with the shock front; 2) the interactions between different waves are calculated mostly based on the exact solutions of the Euler equations, except those involving post-shock subsonic rarefaction waves. This method has been used to investigate the interaction of a Mach number 1.17 shock with an air/SF6 interface, and give wave structures that accord with numerical results and existing experimental data. The angle between the transmitted shock and the horizontal direction is obtained to be in better agreement with experimental data than Catherasoo’s result, and more parameters are obtained, such as the reflected wave and the interface deflection angle. For cases involving a Mach number 2.00 shock with different material density ratios and interface inclination angles, comparisons between theoretical and numerical results show that our method can obtain the type of wave structure more accurately than Catherasoo’s method, and identify a refraction type in which the post-shock strong perturbation catches up with the shock front and a three-wave structure is formed, whereas Catherasoo’s method cannot handle this case. Thus, the results show that the improved method in this work has better applicability and higher accuracy than the existing method in identifying the type of wave structure, and can also provide more information about the wave structures.
      通信作者: 贾雷明, jialeiming@nint.ac.cn
      Corresponding author: Jia Lei-Ming, jialeiming@nint.ac.cn
    [1]

    Taub A H 1947 Phys. Rev. 72 51Google Scholar

    [2]

    Polachek H, Seeger R J 1951 Phys. Rev. 84 922Google Scholar

    [3]

    Henderson L F 1966 J. Fluid Mech. 26 607Google Scholar

    [4]

    Ben-Dor G, Igra O, Elperin T 2001 Handbook of Shock Waves (Vol. 2) (London: Academic Press) pp71,72

    [5]

    Jahn R G 1956 J. Fluid Mech. 1 457Google Scholar

    [6]

    Abd-El-Fattah A M, Henderson L F, Lozzi A 1976 J. Fluid Mech. 76 157Google Scholar

    [7]

    Flores J, Holt M 1982 Phys. Fluids 25 238Google Scholar

    [8]

    Henderson L F, Jia-Huan M, Akira S, Kazuyoshi T 1990 Fluid Dyn. Res. 5 337Google Scholar

    [9]

    Henderson L F 1992 Shock Waves 2 103Google Scholar

    [10]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 86 15Google Scholar

    [11]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 89 79Google Scholar

    [12]

    Henderson L F 1989 J. Fluid Mech. 198 365Google Scholar

    [13]

    Henderson L F, Colella P, Puckett E G 1991 J. Fluid Mech. 224 1Google Scholar

    [14]

    Henderson L F, Puckett E G 2014 Shock Waves 24 553Google Scholar

    [15]

    Nourgaliev R R, Sushchikh S Y, Dinh T N, Theofanous T G 2005 Int. J. Multiphas. Flow 31 969Google Scholar

    [16]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [17]

    Wang M H, Si T, Luo X S 2015 Shock Waves 25 347Google Scholar

    [18]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [19]

    Zhai Z G, Li W, Si T, Luo X S, Yang J M, Lu X Y 2017 Phys. Fluids 29 016102Google Scholar

    [20]

    Igra D, Igra O 2018 Phys. Fluids 30 056104Google Scholar

    [21]

    Sadin D V, Davidchuk V A 2020 J. Eng. Phys. Thermophys. 93 474Google Scholar

    [22]

    Onwuegbu S, Yang Z 2022 AIP Adv. 12 025215Google Scholar

    [23]

    Georgievskii P, Levin V, Sutyrin O 2010 Fluid Dyn. 45 281Google Scholar

    [24]

    Georgievskiy P, Levin V, Sutyrin O 2012 Proceedings of the 15th International Symposium on Flow Visualization Minsk, Belarus, June 25-28, 2012 p1

    [25]

    Catherasoo C J, Sturtevant B 1983 J. Fluid Mech. 127 539Google Scholar

    [26]

    Whitham G B 1957 J. Fluid Mech. 2 145Google Scholar

    [27]

    Whitham G B 1959 J. Fluid Mech. 5 369Google Scholar

    [28]

    Schwendeman D W 1988 J. Fluid Mech. 188 383Google Scholar

    [29]

    Toro E F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd Ed.) (Berlin, Heidelberg: Springers-Verlag) pp115–151

  • 图 1  二维平面激波与物质界面作用示意图 (a) t < 0; (b) t > 0

    Fig. 1.  Schematic diagram of the interaction of two-dimensional planar shock wave with material interface: (a) t < 0; (b) t > 0.

    图 2  波I1沿界面OP1的折射类型 (a) RRS; (b) RRE; (c) IRS; (d) IRE; (e) IRP

    Fig. 2.  Various refraction types of shock wave I1 along the interface OP1: (a) RRS; (b) RRE; (c) IRS; (d) IRE; (e) IRP

    图 3  波I1, R1和M1组成三波结构

    Fig. 3.  Three wave structures of I1, R1 and M1.

    图 4  不同时刻波I1与R1作用

    Fig. 4.  Interaction between I1 and R1 at different times.

    图 5  波I2沿界面OP1的折射类型 (a) IRE; (b) IRP

    Fig. 5.  Various refraction types of shock wave I2 along the interface OP1: (a) IRE; (b) IRP.

    图 6  第一种情形下波I1, I2沿界面OP1的相互作用

    Fig. 6.  Interaction of I1 and I2 along the interface OP1 under case 1.

    图 7  第二种情形下波I1, I2沿界面OP1的相互作用

    Fig. 7.  Interaction of I1 and I2 along the interface OP1 under case 2.

    图 8  第三种情形下波I1, I2沿界面OP1的相互作用

    Fig. 8.  Interaction of I1 and I2 along the interface OP1 under case 3.

    图 9  t = 0.10 ms时刻波系结构 (a) 本文方法; (b) Catherasoo方法; (c) 数值结果

    Fig. 9.  Wave structure at t = 0.10 ms: (a) Our own method; (b) Catherasoo’s method; (c) numerical results.

    图 10  波系结构参量随时间变化 (a) 波系结构; (b) ϕ1; (c) α1; (d) α2

    Fig. 10.  Variation of wave structure parameters with time: (a) Wave structure; (b) ϕ1; (c) α1; (d) α2.

    图 11  |θMθT1|和|θMθI2|随pM的变化 (a) |θM θT1|; (b) |θMθI2|

    Fig. 11.  Variations of |θMθT1| and |θMθI2| with pM: (a) |θMθT1|; (b) |θMθI2|.

    图 12  不同φ值下的波系结构(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a)—(i) 分别对应φ = 0°, 10°, ···, 80°

    Fig. 12.  Wave structures for different φ (MaI1 = 2.00, ρ2/ρ1 = 0.25). Panels (a)–(i) correspond to φ = 0°, 10°, ···, 80°, respectively.

    图 13  波系结构变量示意图

    Fig. 13.  Diagram for wave structure parameters.

    图 14  t = 4.00 ms时流场压力分布数值结果(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a) φ = 40°; (b) φ = 50°

    Fig. 14.  Numerical results for field pressure at t = 4.00 ms (MaI1 = 2.00, ρ2/ρ1 = 0.25): (a) φ = 40°; (b) φ = 50°.

    图 15  偏差绝对值随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 0.25) (a) ϕ2, α3r4; (b) α4d7-8.

    Fig. 15.  Variation of absolute value of deviations with φ (MaI1 = 2.00, ρ2/ρ1 = 0.25): (a) ϕ2, α3 and r4; (b) α4 and d7-8.

    图 16  波系结构类型随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 0.25)

    Fig. 16.  Variation of wave structure types with φ (MaI1 = 2.00, ρ2/ρ1 = 0.25).

    图 17  不同φ值下的波系结构(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a)—(i) 分别对应φ = 0°, 10°, ···, 80°

    Fig. 17.  Wave structures for different φ (MaI1 = 2.00, ρ2/ρ1 = 4.00). Panels (a)–(i) correspond to φ = 0°, 10°, ···, 80°, respectively.

    图 18  t = 6.00 ms时流场压力分布数值结果(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a) φ = 20°; (b) φ = 30°

    Fig. 18.  Numerical results for field pressure at t = 6.00 ms (MaI1 = 2.00, ρ2/ρ1 = 4.00): (a) φ = 20°; (b) φ = 30°.

    图 19  偏差绝对值随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 4.00) (a) ϕ1, α1d5-6; (b) α2r3

    Fig. 19.  Variation of absolute value of deviations with φ (MaI1 = 2.00, ρ2/ρ1 = 4.00): (a) ϕ1, α1 and d5-6; (b) α2 and r3.

    图 20  波系结构类型随φ的变化(MaI1 = 2.00, ρ2/ρ1 = 4.00)

    Fig. 20.  Variation of wave structure types with φ (MaI1 = 2.00, ρ2/ρ1 = 4.00).

    表 1  波T1参数的理论计算结果

    Table 1.  Theoretical retuslts for parameters of T1.

    计算方法pT1/(105 Pa)uT1/(m·s–1)vT1/(m·s–1)
    本文1.3215.8–32.6
    Catherasoo1.219.95–21.6
    下载: 导出CSV

    表 2  波T1与I2作用的理论计算结果

    Table 2.  Theoretical retuslts for interaction between T1 and I2.

    波T1参数计算方法α1/(°)α2/(°)pM/(105 Pa)
    pT1 = 1.32×105 Pa本文21.837.22.45
    Catherasoo24.932.02.23
    pT1 = 1.21×105 Pa本文21.336.62.37
    Catherasoo24.130.82.17
    下载: 导出CSV

    表 3  不同φ值下波系结构变量(MaI1 = 2.00, ρ2/ρ1 = 0.25)

    Table 3.  Wave structure parameters for different φ (MaI1 = 2.00, ρ2/ρ1 = 0.25).

    φ/(°)计算方法ϕ2α3α4d7–8r4
    结果/(°)偏差/%结果/(°)偏差/%结果/(°)偏差/%结果/m偏差/%结果/m偏差/%
    0本文29.4–4.4213.0–10.131.710.61.1334.24.600.86
    Catherasoo28.4–7.8912.2–15.629.53.011.0222.04.54–0.31
    10本文29.4–4.628.97–14.322.68.860.8434.04.33–0.51
    Catherasoo28.2–8.547.89–24.622.16.530.8738.94.29–1.33
    20本文29.4–5.125.33–25.413.92.430.5433.04.09–3.34
    Catherasoo28.1–9.283.97–44.415.412.80.7277.54.06–3.89
    30本文29.4–9.642.01–54.15.74–27.50.242.593.88–8.68
    Catherasoo28.1–13.70.37–91.79.1215.00.59148.73.86–9.00
    40本文4.1725.94.16–5.15
    Catherasoo5.0251.44.22–3.88
    50本文0.8222.74.74–1.27
    Catherasoo1.99197.94.861.22
    60本文4.94–0.06
    Catherasoo0.715.052.12
    70本文4.60–0.85
    Catherasoo4.60–0.85
    80本文4.31–0.98
    Catherasoo4.31–0.98
    下载: 导出CSV

    表 4  不同φ值下波系结构变量(MaI1 = 2.00, ρ2/ρ1 = 4.00)

    Table 4.  Wave structure parameters for different φ (MaI1 = 2.00, ρ2/ρ1 = 4.00).

    φ/(°)计算方法ϕ1α1α2d5–6r3
    结果/(°)偏差/%结果/(°)偏差/%结果/(°)偏差/%结果/m偏差/%结果/m偏差/%
    0本文29.6–2.3213.3–11.431.211.30.9940.44.270.83
    Catherasoo29.4–3.0212.0–20.031.010.51.0448.14.17–1.61
    10本文29.5–2.6417.8–9.3540.28.181.2231.24.560.69
    Catherasoo29.8–1.6416.8–14.239.66.551.2332.54.46–1.51
    20本文29.4–1.1423.0–6.6349.81.444.941.78
    Catherasoo30.21.7322.0–10.948.81.444.78–1.53
    30本文29.53.2028.0–6.9659.71.715.321.96
    Catherasoo29.94.5327.4–9.1058.41.665.19–0.68
    40本文27.53.7432.6–9.0769.21.975.860.14
    Catherasoo27.43.0733.4–6.8167.91.845.860.14
    50本文22.81.8638.1–8.4078.51.795.82–0.16
    Catherasoo23.34.4939.9–3.9977.21.655.82–0.16
    60本文17.60.1244.088.01.365.240.01
    Catherasoo18.33.7146.886.51.225.240.01
    70本文12.00.3650.197.70.844.38–0.45
    Catherasoo12.54.3554.095.80.734.38–0.45
    80本文6.10–0.6456.4107.50.454.31–0.73
    Catherasoo6.353.4760.9105.00.394.31–0.73
    下载: 导出CSV
  • [1]

    Taub A H 1947 Phys. Rev. 72 51Google Scholar

    [2]

    Polachek H, Seeger R J 1951 Phys. Rev. 84 922Google Scholar

    [3]

    Henderson L F 1966 J. Fluid Mech. 26 607Google Scholar

    [4]

    Ben-Dor G, Igra O, Elperin T 2001 Handbook of Shock Waves (Vol. 2) (London: Academic Press) pp71,72

    [5]

    Jahn R G 1956 J. Fluid Mech. 1 457Google Scholar

    [6]

    Abd-El-Fattah A M, Henderson L F, Lozzi A 1976 J. Fluid Mech. 76 157Google Scholar

    [7]

    Flores J, Holt M 1982 Phys. Fluids 25 238Google Scholar

    [8]

    Henderson L F, Jia-Huan M, Akira S, Kazuyoshi T 1990 Fluid Dyn. Res. 5 337Google Scholar

    [9]

    Henderson L F 1992 Shock Waves 2 103Google Scholar

    [10]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 86 15Google Scholar

    [11]

    Abd-El-Fattah A M, Henderson L F 1978 J. Fluid Mech. 89 79Google Scholar

    [12]

    Henderson L F 1989 J. Fluid Mech. 198 365Google Scholar

    [13]

    Henderson L F, Colella P, Puckett E G 1991 J. Fluid Mech. 224 1Google Scholar

    [14]

    Henderson L F, Puckett E G 2014 Shock Waves 24 553Google Scholar

    [15]

    Nourgaliev R R, Sushchikh S Y, Dinh T N, Theofanous T G 2005 Int. J. Multiphas. Flow 31 969Google Scholar

    [16]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [17]

    Wang M H, Si T, Luo X S 2015 Shock Waves 25 347Google Scholar

    [18]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [19]

    Zhai Z G, Li W, Si T, Luo X S, Yang J M, Lu X Y 2017 Phys. Fluids 29 016102Google Scholar

    [20]

    Igra D, Igra O 2018 Phys. Fluids 30 056104Google Scholar

    [21]

    Sadin D V, Davidchuk V A 2020 J. Eng. Phys. Thermophys. 93 474Google Scholar

    [22]

    Onwuegbu S, Yang Z 2022 AIP Adv. 12 025215Google Scholar

    [23]

    Georgievskii P, Levin V, Sutyrin O 2010 Fluid Dyn. 45 281Google Scholar

    [24]

    Georgievskiy P, Levin V, Sutyrin O 2012 Proceedings of the 15th International Symposium on Flow Visualization Minsk, Belarus, June 25-28, 2012 p1

    [25]

    Catherasoo C J, Sturtevant B 1983 J. Fluid Mech. 127 539Google Scholar

    [26]

    Whitham G B 1957 J. Fluid Mech. 2 145Google Scholar

    [27]

    Whitham G B 1959 J. Fluid Mech. 5 369Google Scholar

    [28]

    Schwendeman D W 1988 J. Fluid Mech. 188 383Google Scholar

    [29]

    Toro E F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd Ed.) (Berlin, Heidelberg: Springers-Verlag) pp115–151

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [4] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [6] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究. 物理学报, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [7] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [8] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究. 物理学报, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [9] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [10] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [11] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [12] 沙莎, 陈志华, 张焕好, 姜孝海. Schardin问题的数值研究. 物理学报, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [13] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [14] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [15] 吴钦宽. 一类激波问题的间接匹配解. 物理学报, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [16] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究. 物理学报, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [17] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] 吕晓阳, 孔令江, 刘慕仁. 一维元胞自动机随机交通流模型的宏观方程分析. 物理学报, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  4303
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2022-12-23
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回