搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性

陈棋 尚学府 张鹏 徐鹏 王淼 今西誠之

引用本文:
Citation:

流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性

陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之

Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin

Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi
PDF
导出引用
  • 以溶胶凝胶法合成的高纯Li1.4Al0.4Ti1.6(PO4)3(LATP)纳米晶体粉末为原料,通过流延法成膜,在950 ℃下煅烧5 h合成LATP固态电解质片;对其进行环氧树脂改性后,能量色散X射线光谱元素图像表明环氧树脂完全浸入LATP内部,可以有效防止水渗透.研究发现流延法合成的LATP固态电解质在25 ℃时电导率高达8.70× 10-4S· cm-1、活化能为0.36eV、相对密度为89.5%.经过环氧树脂改性后电导率仍高达3.35× 10-4S· cm-1、活化能为0.34eV、相对密度为93.0%.高电导隔水的环氧树脂改性LATP固态电解质可作为锂金属保护薄膜用于新型高比容量电池.
    The Li1.4Al0.4Ti1.6(PO4)3(LATP) nanocrystal powder is synthesized by citric acid assisted sol-gel method.The LATP powder is crystalized at 850℃ for 4 h,and the X-ray diffraction patterns show that the NASICON structure is obtained without any impurity phase.The LATP films are prepared by tape casting method through using as-synthesized LATP powder and subsequently recrystalized at various temperatures for 5 h.The impedance spectra of LATP film recrystalized at various temperatures indicate that the film sintered at 950℃ has the highest lithium ionic conductivity. Meanwhile,it is demonstrated that no impurity exists in LATP film recrystalizated at 950℃,and its lattice parameters are a=b=8.50236 Å and c=20.82379 Å.The high-purity LATP-epoxy films are prepared by modification with epoxy resin.The water permeation test proves that the LATP-epoxy film can prevent water from penetrating for 15 d,which indicates that epoxy resin fills the holes in LATP film.The fracture surface topography of LATP-epoxy film shows its dense structure with grain sizes from nano-scale to micro-scale.The energy dispersive X-ray spectrometer mapping of the fracture of LATP-epoxy film indicates that the carbon elements are uniformly distributed in grain boundary,which means that epoxy resin is soaked into LATP film.The relative density of 89.5% is obtained for LATP film,which is increased to 93.0% for LATP-epoxy (the nominal density is around 2.9624 g/cm3).The difference in relative density between LATP film and LATP-epoxy film indicates that the epoxy resin is immersed in LATP film already.The total,bulk,and grain boundary lithium ionic conductivities for the LATP film at 25℃ are 8.70×10-4 S·cm-1,2.63×10-3 S·cm-1 and 1.30×10-3 S·cm-1,respectively.The total,bulk,and grain boundary lithium ionic conductivities for the LATP-epoxy film at 25℃ are 3.35×10-4 S·cm-1,1.84×10-3 S·cm-1 and 4.09×10-4 S·cm-1,respectively.The decrease in the total conductivity of the LATP-epoxy film may be caused by the increase in its grain boundary resistance and its exposure to the atmosphere during modification with epoxy resin.The high lithium ionic conductivity for both LATP film and LATP-epoxy contributes to homogeneous mixture at sol-gel process and the decreasing of grain boundary impedance for this special structure.The activation energies for LATP film and LATP-epoxy film are 0.36 eV and 0.34 eV,respectively, based on Arrhenius equation.The water-impermeable high lithium ion conducting solid electrolyte of LATP modified with epoxy resin is likely to be used as protective film for lithium metal electrode of novel high energy density batteries.
      通信作者: 王淼, miaowang@css.zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61471317)资助的课题.
      Corresponding author: Wang Miao, miaowang@css.zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471317).
    [1]

    Armand M, Tarascon J M 2008 Nature 451 652

    [2]

    Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1

    [3]

    Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621

    [4]

    Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58

    [5]

    Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51

    [6]

    Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255

    [7]

    Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969

    [8]

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661

    [9]

    Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19

    [10]

    Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62

    [11]

    McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581

    [12]

    Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926

    [13]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023

    [14]

    Fu J 1997 Solid State Ionics 96 195

    [15]

    Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091

    [16]

    Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29

    [17]

    Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303

    [18]

    Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943

    [19]

    Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342

    [20]

    Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147

    [21]

    Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265

    [22]

    Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971

    [23]

    Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065

    [24]

    Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54

  • [1]

    Armand M, Tarascon J M 2008 Nature 451 652

    [2]

    Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1

    [3]

    Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621

    [4]

    Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58

    [5]

    Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51

    [6]

    Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255

    [7]

    Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969

    [8]

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661

    [9]

    Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19

    [10]

    Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62

    [11]

    McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581

    [12]

    Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926

    [13]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023

    [14]

    Fu J 1997 Solid State Ionics 96 195

    [15]

    Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091

    [16]

    Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29

    [17]

    Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303

    [18]

    Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943

    [19]

    Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342

    [20]

    Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147

    [21]

    Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265

    [22]

    Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971

    [23]

    Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065

    [24]

    Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54

  • [1] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性. 物理学报, 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性. 物理学报, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [3] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [5] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善. 物理学报, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [8] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [9] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [10] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [11] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响. 物理学报, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [12] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系. 物理学报, 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [13] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究. 物理学报, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [14] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [15] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究. 物理学报, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [16] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响. 物理学报, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [17] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [18] 周 丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3单晶/环氧树脂1-3型复合材料的压电性能研究. 物理学报, 2008, 57(7): 4552-4557. doi: 10.7498/aps.57.4552
    [19] 李宝兴, 叶美英, 褚巧燕, 俞 健. 玻璃微流控芯片表面改性的微观机理研究. 物理学报, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [20] 徐世秋, 韩季之. 环氧树脂在固化过程中的红外吸收光谱. 物理学报, 1960, 16(2): 81-85. doi: 10.7498/aps.16.81
计量
  • 文章访问数:  6959
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-03
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-09-05

/

返回文章
返回