-
以溶胶凝胶法合成的高纯Li1.4Al0.4Ti1.6(PO4)3(LATP)纳米晶体粉末为原料,通过流延法成膜,在950 ℃下煅烧5 h合成LATP固态电解质片;对其进行环氧树脂改性后,能量色散X射线光谱元素图像表明环氧树脂完全浸入LATP内部,可以有效防止水渗透.研究发现流延法合成的LATP固态电解质在25 ℃时电导率高达8.70× 10-4S· cm-1、活化能为0.36eV、相对密度为89.5%.经过环氧树脂改性后电导率仍高达3.35× 10-4S· cm-1、活化能为0.34eV、相对密度为93.0%.高电导隔水的环氧树脂改性LATP固态电解质可作为锂金属保护薄膜用于新型高比容量电池.
-
关键词:
- Li1.4Al0.4Ti1.6(PO4)3固态电解质 /
- 环氧树脂改性 /
- 流延法
The Li1.4Al0.4Ti1.6(PO4)3(LATP) nanocrystal powder is synthesized by citric acid assisted sol-gel method.The LATP powder is crystalized at 850℃ for 4 h,and the X-ray diffraction patterns show that the NASICON structure is obtained without any impurity phase.The LATP films are prepared by tape casting method through using as-synthesized LATP powder and subsequently recrystalized at various temperatures for 5 h.The impedance spectra of LATP film recrystalized at various temperatures indicate that the film sintered at 950℃ has the highest lithium ionic conductivity. Meanwhile,it is demonstrated that no impurity exists in LATP film recrystalizated at 950℃,and its lattice parameters are a=b=8.50236 Å and c=20.82379 Å.The high-purity LATP-epoxy films are prepared by modification with epoxy resin.The water permeation test proves that the LATP-epoxy film can prevent water from penetrating for 15 d,which indicates that epoxy resin fills the holes in LATP film.The fracture surface topography of LATP-epoxy film shows its dense structure with grain sizes from nano-scale to micro-scale.The energy dispersive X-ray spectrometer mapping of the fracture of LATP-epoxy film indicates that the carbon elements are uniformly distributed in grain boundary,which means that epoxy resin is soaked into LATP film.The relative density of 89.5% is obtained for LATP film,which is increased to 93.0% for LATP-epoxy (the nominal density is around 2.9624 g/cm3).The difference in relative density between LATP film and LATP-epoxy film indicates that the epoxy resin is immersed in LATP film already.The total,bulk,and grain boundary lithium ionic conductivities for the LATP film at 25℃ are 8.70×10-4 S·cm-1,2.63×10-3 S·cm-1 and 1.30×10-3 S·cm-1,respectively.The total,bulk,and grain boundary lithium ionic conductivities for the LATP-epoxy film at 25℃ are 3.35×10-4 S·cm-1,1.84×10-3 S·cm-1 and 4.09×10-4 S·cm-1,respectively.The decrease in the total conductivity of the LATP-epoxy film may be caused by the increase in its grain boundary resistance and its exposure to the atmosphere during modification with epoxy resin.The high lithium ionic conductivity for both LATP film and LATP-epoxy contributes to homogeneous mixture at sol-gel process and the decreasing of grain boundary impedance for this special structure.The activation energies for LATP film and LATP-epoxy film are 0.36 eV and 0.34 eV,respectively, based on Arrhenius equation.The water-impermeable high lithium ion conducting solid electrolyte of LATP modified with epoxy resin is likely to be used as protective film for lithium metal electrode of novel high energy density batteries.[1] Armand M, Tarascon J M 2008 Nature 451 652
[2] Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1
[3] Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621
[4] Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58
[5] Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51
[6] Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255
[7] Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969
[8] Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661
[9] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19
[10] Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62
[11] McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581
[12] Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926
[13] Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023
[14] Fu J 1997 Solid State Ionics 96 195
[15] Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091
[16] Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29
[17] Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303
[18] Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943
[19] Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342
[20] Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147
[21] Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265
[22] Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971
[23] Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065
[24] Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54
-
[1] Armand M, Tarascon J M 2008 Nature 451 652
[2] Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1
[3] Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621
[4] Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58
[5] Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51
[6] Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255
[7] Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969
[8] Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661
[9] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19
[10] Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62
[11] McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581
[12] Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926
[13] Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023
[14] Fu J 1997 Solid State Ionics 96 195
[15] Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091
[16] Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29
[17] Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303
[18] Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943
[19] Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342
[20] Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147
[21] Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265
[22] Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971
[23] Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065
[24] Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54
计量
- 文章访问数: 6959
- PDF下载量: 478
- 被引次数: 0