搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性

李梅 钟淑英 胡军平 孙宝珍 徐波

引用本文:
Citation:

固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性

李梅, 钟淑英, 胡军平, 孙宝珍, 徐波

Migration properties of Li+ in Li1+x AlxTi2–x(PO4)3

Li Mei, Zhong Shu-Ying, Hu Jun-Ping, Sun Bao-Zhen, Xu Bo
PDF
HTML
导出引用
  • Li1+xAlxTi2–x(PO4)3 (LATP)是一种颇具前景的NASICON型锂离子固态电解质. 本文通过第一性原理计算研究了不同Al掺杂浓度(x = 0.00, 0.16, 0.33, 0.50)对LATP的结构特性、电学特性以及Li+迁移特性的影响. 结果表明, Al能够稳定掺杂进入LiTi2(PO4)3(LTP)的晶体结构当中. 当Al掺杂浓度x = 0.16时, Li—O键的平均键长最长, 成键强度最弱, 而Ti—O键强度随Al掺杂浓度变化不大. Al掺杂浓度对LATP带隙的影响不大, 但Al附近的O原子聚集了更多的负电荷, 形成AlO6极化中心. Li+不同的迁移方式(空位迁移、间隙位迁移和协同迁移)在Al掺杂浓度不同时展现出复杂的能垒变化, Li+在空位迁移中迁移势垒随Al掺杂浓度的增大而升高, 而在间隙位迁移中Li+的迁移势垒变化相反, 由于协同迁移中涉及空位和间隙位两种位点, Li+的迁移势垒表现为随Al掺杂浓度的升高先降低后升高的复杂变化. 当x = 0.50时, LATP具有最低的Li+迁移势垒0.342 eV, 这个势垒值是间隙位迁移的结果. 因此, 通过改变Al掺杂浓度, 可改变间隙Li+浓度及迁移通道结构, 进而调节Li+的迁移性能, 提高LATP中的Li+导电性能 .
    NASICON-type materials are specific skeleton structures in which ions move in three dimensions. Li1+xAlxTi2–x(PO4)3 (LATP) is a promising NASICON-type solid-state electrolyte for Li-ion batteries, due to its relatively high Li+ conductivity, chemical stability to air and moisture, and mechanical strength. Motivated by this, we study the doping and electronic properties of Li1+xAlxTi2–x(PO4)3 (x = 0.00, 0.16, 0.33, 0.50) and the transport properties of Li+ in them by using first-principles calculations based on density functional theory as implemented in Vienna ab initio Simulation Package (VASP). The results indicate that Al can substitute Ti to form a stable structure. When the Al doping concentration is x = 0.16, the average bond length of Li—O bond is longest and the bonding strength is weakest, this may lead to the expansion of channels for Li+ migration, which facilitates the diffusion of Li+. With the increase of Al doping concentration, the strength of Ti—O bond remains almost unchanged. The electronic structure calculations exhibit that with the increase of Al doping concentration, the bandgap of LATP does not change much, and LATP shows semiconductor characteristic. The differential charge results indicate that more electrons are localized on O-atoms surrounding the Al-dopant, causing the AlO6 groups to form polarization centers. The study on the migration properties of Li+ indicates that Li+ exhibits different migration characteristics in three different migration modes (vacancy migration, interstitial migration, and cooperative migration). With the increase of Al doping concentration, the migration barrier of Li+ increases via vacancies involving only lattice site migration, and the migration barrier for LATP-0.16 is lowest (0.369 eV). While in interstitial migration involving only interstitial sites, the migration barrier of Li+ decreases accordingly. When the Al doping concentration is x = 0.50, the migration barrier is lowest (0.342 eV). In terms of cooperative migration, this migration mode involves both vacancy and interstitial sites, so the migration barrier first decreases and then increases with the increase of Al doping concentration. Thus, our study suggests that by varying the concentration of Al doping, the interstitial Li+ content, migration channel structure, and the migration performance of Li+ can be changed favorably. Our results provide a theoretical basis for improving the ion conductivity of Li in LATP by varying the Al doping concentration in experiment.
  • 图 1  (a) LTP晶体结构, TiO6八面体和PO4四面体共顶点连接形成三维骨架, 蓝色八面体为[Ti/Al]O6, 灰色四面体为PO4; (b) LTP晶体结构中Li的间隙位点, 绿色球为Li6b位点, 紫红色球为Li18e位点, 橙色球为Li36f位点

    Fig. 1.  (a) LTP crystal structure, TO6 octahedron and PO4 tetrahedron are connected together to form a three dimensional skeleton, the blue octahedron is [Ti/Al]O6, and the gray tetrahedron is PO4; (b) the interstitial sites of Li in the LTP crystal structure: the green sphere is the Li6b site, the purple-red sphere is the Li18e site, and the orange sphere is the Li36f site.

    图 2  不同浓度下优化后的LATP结构 (a) LATP-0.16; (b) LATP-0.33; (c) LATP-0.50

    Fig. 2.  Relaxed LATP structures at different concentrations: (a) LATP-0.16; (b) LATP-0.33; (c) LATP-0.50.

    图 3  LTP和LATP中Li+在迁移过程中势垒最高点处的迁移离子的Li—O键长和邻近Ti离子的Ti—O键长及其八面体体积 (a) Li—O键键长及LiO6八面体体积; (b) Ti—O键键长及TiO6八面体体积

    Fig. 3.  Li—O bond length and octahedral volume of the migrating ion and the nearest ion at the highest barrier during migration in LTP and LATP: (a) Length of Li—O and the volume of LiO6 octahedral; (b)the length of Ti—O and the volume of TiO6 octahedral.

    图 4  LATP (x = 0.16, 0.33, 0.50)相对于LTP和Al的差分电荷密度 (a) LATP-0.16; (b) LATP-0.33; (c) LATP-0.50. 黄色区域表示电荷积累, 等值面值为1×10–3 e3

    Fig. 4.  Charge density differences of LATP (x = 0.16, 0.33, 0.50) with respect to LTP and Al: (a) LATP-0.16; (b) LATP-0.33; (c) LATP-0.50. The yellow region represents charge accumulation, the isosurface value is 1×10–3 e3.

    图 5  LTP和LATP (x = 0.16, 0.33, 0.50)的总态密度和投影态密度, 插图为费米能级附近的局部放大

    Fig. 5.  Calculated total and partial density of states (DOS) for the LTP and LATP (x = 0.16, 0.33, 0.50) structures, the Fermi energy is at zero, the illustration is partially enlarged near the Fermi level.

    图 6  (a), (b) Li+在LTP和LATP中通过空位迁移的迁移势垒; (c) Li+的迁移路径

    Fig. 6.  (a), (b) Migration barrier of Li+ transported by vacancy migration in LTP and LATP; (c) the migration path of Li+.

    图 7  (a), (b) Li+在LTP和LATP中通过间隙位迁移输运的迁移势垒; (c) Li+的迁移路径

    Fig. 7.  (a), (b) Migration barrier of Li+ transported by interstitial migration in LTP and LATP; (c) the migration path of Li+.

    图 8  (a), (b) Li+在LTP和LATP中通过协同迁移输运的迁移势垒; (c) Li+的迁移路径

    Fig. 8.  (a), (b) Migration barrier of Li+ transported by cooperative migration in LTP and LATP; (c) the migration path of Li+.

    表 1  LTP及不同Al掺杂浓度下LATP结构的晶格参数, 晶胞体积与掺杂能

    Table 1.  Lattice constants, volume of hexagonal unit cell, Al defect formation energies of LTP and LATP structures with different Al-doping concentration.

    体系abcV3掺杂能/eV
    LTP8.6158.61521.0971355.97
    Theory[5]8.638.6321.13
    Experiment[41]8.5118.51120.8431307.53
    LATP-0.168.6198.62021.0211352.33-4.14
    LATP-0.338.6148.61420.9241343.79-3.97
    Experiment[55]8.508.5020.82
    LATP-0.508.6078.60320.8761337.75-4.01
    Experiment[48]8.48978.489720.76351296.03
    下载: 导出CSV

    表 2  优化后的LTP和LATP结构中的平均键长和八面体体积

    Table 2.  Average bond lengths and the octahedral volume in relaxed LTP and LATP structures.

    结构Li—O/Å$ {V}_{{\mathrm{L}}{\mathrm{i}}{\mathrm{O}}6} $/Å3Ti—O/Å$ {V}_{{\mathrm{T}}{\mathrm{i}}{\mathrm{O}}6} $/Å3
    LTP2.27613.6561.9609.936
    LATP-0.162.28413.6811.9609.935
    LATP-0.332.27213.5211.9589.912
    LATP-0.502.27913.4921.9599.840
    下载: 导出CSV
  • [1]

    Nitta N, Wu F X, Lee J T, Yushin G 2015 Mater. Today 18 252Google Scholar

    [2]

    Abraham K M 2015 J. Phys. Chem. Lett. 6 830Google Scholar

    [3]

    Tarascon J M 2010 Phil. Trans. R. Soc. A 368 3227Google Scholar

    [4]

    Quartarone E, Mustarelli P 2011 Chem. Soc. Rev. 40 2525Google Scholar

    [5]

    Zhang B K, Tan R, Yang L Y, Zheng J X, Zhang K C, Mo S J, Lin Z, Pan F 2018 Energy Storage Mater. 10 139Google Scholar

    [6]

    Chen R, Qu W, Guo X, Li L, Wu F 2016 Mater. Horiz. 3 487Google Scholar

    [7]

    Yu W, Zhong W H 2015 Chem. Electro. Chem. 2 3

    [8]

    Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2011 Nat. Mater. 11 19

    [9]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [10]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [11]

    Croce F, Appetecchi G B, Persi L, Scrosati B 1998 Nature 394 456Google Scholar

    [12]

    Xiao Z L, Long T Y, Song L B, Zheng Y H, Wang C 2022 Ionics 28 15Google Scholar

    [13]

    Xi G, Xiao M, Wang S J, Han D M, Li Y N, Meng Y Z 2020 Adv. Funct. Mater. 31 2007598

    [14]

    Zhang Z Z, Wenzel S, Zhu Y Z, Sann J, Shen L, Yang J, Yao X Y, Hu Y S, Wolverton C, Li H, Chen L Q, Janek J 2020 ACS Appl. Energy Mater. 3 7427Google Scholar

    [15]

    Chen X F, Guan Z Q, Chu F L, Xue Z C, Wu F X, Yu Y 2021 Info. Mat. 4 e12248

    [16]

    吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平 2020 储能科学与技术 9 1472

    Wu J, Jiang X B, Yang Y, Wu Y M, Zhu L, Tang W P 2020 Energy Stor. Sci. Tech. 9 1472

    [17]

    Zhang L X, Liu Y M, Han J, Yang C, Zhou X, Yuan Y, You Y 2023 ACS Appl. Mater. Interfaces 15 44867Google Scholar

    [18]

    Subramanian M A, Subramanian R, Clearfield A 1986 Solid State Ionics 18-19 562Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [20]

    Adachi G Y, Imanaka N, Aon H 1996 Adv. Mater. 8 2

    [21]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [22]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics. 201 49Google Scholar

    [23]

    Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25

    [24]

    Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Stor. 73 108950Google Scholar

    [25]

    Arbi K, Lazarraga M G, Ben Hassen Chehimi D, Ayadi-Trabelsi M, Rojo J, Sanz J 2004 Chem. Mater. 16 255Google Scholar

    [26]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 2941Google Scholar

    [27]

    Arbi K, Hoelzel M, Kuhn A, Garcia-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290Google Scholar

    [28]

    Rao A V, Veeraiah V, Rao A P, Babu B K, Latha B S, Rao K R 2014 B Mater. Sci. 37 883Google Scholar

    [29]

    Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129

    [30]

    Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloys Compd. 775 1147Google Scholar

    [31]

    Luo Y Y, Jiang X X, Yu Y J, Liu L D, Lin X T, Wang Z K, Han L, Luo Z W, Lu A X 2023 Solid State Ionics 390 116111Google Scholar

    [32]

    Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interfaces 12 54752Google Scholar

    [33]

    Aono H, Sugimota E, Sadaoka Y, Imanaka N, Adachi Gi Y 1993 J. Electrochem. Soc. 140 1827Google Scholar

    [34]

    Wu P F, Zhou W W, Su X, Li J Y, Su M, Zhou X C, Sheldon B W, Lu W Q 2022 Adv. Energy Mater. 13 2203440

    [35]

    任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐 2020 物理学报 69 226601Google Scholar

    Ren Y, Zou Z Y, Zhao Q, Wang D, Yu J, Shi S Q 2020 Acta Phys. Sin. 69 226601Google Scholar

    [36]

    Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 Info. Mat. 3 1195

    [37]

    Zhang B K, Lin Z, Dong H F, Wang L W, Pan F 2020 J. Mater. Chem. A 8 342Google Scholar

    [38]

    Kotobuki M, Koishi M 2019 J. Asian Ceram 7 69Google Scholar

    [39]

    Vinod Chandran C, Pristat S, Witt E, Tietz F, Heitjans P 2016 J. Phys. Chem. C 120 8436Google Scholar

    [40]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [41]

    Dashjav E, Tietz F 2014 Z. Anorg. Allg. Chem. 640 3070Google Scholar

    [42]

    王田田 2022 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Wang T T 2022 Ph. D. Dissertation (Shanghai: Shanghai Institude of Ceramics, Chinese Academy of Sciences

    [43]

    Francisco B E, Stoldt C R, M’Peko J C 2014 Chem. Mater. 26 4741Google Scholar

    [44]

    He S N, Xu Y L, Zhang B F, Sun X F, Chen Y J, Jin Y L 2018 Chem. Eng. J. 345 483Google Scholar

    [45]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [46]

    Alami M, Brochu R, Soubeyroux J L, Gravereau P, Flem G L, Hagenmuller P 1991 J. Solid State Chem. 90 185Google Scholar

    [47]

    Qui D T, Hamdoune S, Soubeyroux J L, Prince E 1988 J. Solid State Chem. 72 309Google Scholar

    [48]

    Redhammer G J, Rettenwander D, Pristat S, Dashjav E, Kumar C M N, Topa D, Tietz F 2016 Solid State Sci. 60 99Google Scholar

    [49]

    Pérez-Estébanez M, Isasi-Marín J, Többens D M, Rivera-Calzada A, León C 2014 Solid State Ionics 266 1Google Scholar

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [52]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [53]

    James D P, Hendrik J M 1977 Phys. Rev. B 16 1748Google Scholar

    [54]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [55]

    Daniel P, Daniel M, Daniel F U 2021 Solid State Ionics 359

    [56]

    姚登浪, 黄泽琛, 郭祥, 丁召, 王一 2024 原子与分子物理学报 41 153

    Yao D L, Huang Z C, Guo X, Ding Z, Wang Y 2024 J. At. Mol. Phys. 41 153

    [57]

    Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351Google Scholar

    [58]

    Lu X, Wang S H, Xiao R J, Shi S Q, Li H, Chen L Q 2017 Nano Energy 41 626Google Scholar

    [59]

    Woodcock D A, Lightfoot P 1999 J. Mater. Chem. 9 2907Google Scholar

    [60]

    He X F, Zhu Y Z, Mo Y F 2017 Nat. Commun. 8 15893Google Scholar

    [61]

    Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303Google Scholar

    [62]

    Case D, McSloy A J, Sharpe R, Yeandel S R, Bartlett T, Cookson J, Dashjav E, Tietz F, Naveen Kumar C M, Goddard P 2020 Solid State Ionics 346 115192Google Scholar

  • [1] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, doi: 10.7498/aps.72.20221808
    [2] 宋雨心, 李玉琦, 王凌寒, 张晓兰, 王冲, 王钦生. 利用Li+插层调控WS2光电器件响应性能研究. 物理学报, doi: 10.7498/aps.72.20231000
    [3] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, doi: 10.7498/aps.68.20191161
    [4] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [5] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响. 物理学报, doi: 10.7498/aps.66.208201
    [6] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, doi: 10.7498/aps.66.188201
    [7] 嘉明珍, 王红艳, 陈元正, 马存良. Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响. 物理学报, doi: 10.7498/aps.65.057101
    [8] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [9] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, doi: 10.7498/aps.64.138101
    [10] 罗林龄, 唐科, 朱达川, 韩涛, 赵聪. Li+和Er3+掺杂对Ba2SiO4:Eu2+发光性能的影响. 物理学报, doi: 10.7498/aps.62.157802
    [11] 秦青松, 马新龙, 邵宇, 杨星瑜, 盛鸿飞, 杨靖忠, 尹瑶, 张加驰. 新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究. 物理学报, doi: 10.7498/aps.61.097804
    [12] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质. 物理学报, doi: 10.7498/aps.61.187306
    [13] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.013601
    [14] 徐晓光, 王春忠, 刘 伟, 孟 醒, 孙 源, 陈 岗. Mg掺杂对Li(Co,Al)O2电子结构影响的第一原理研究. 物理学报, doi: 10.7498/aps.54.313
    [15] 贾祥富, 杨 威. 共面双对称几何中Li+(1s2)(e,2e)反应的理论研究. 物理学报, doi: 10.7498/aps.48.628
    [16] 贾祥富, 杨 威. Li+低能(e,2e)反应角分布. 物理学报, doi: 10.7498/aps.47.1783
    [17] 俞文海, 杨原. 非晶态Li+导体分相和晶化过程中的相界效应. 物理学报, doi: 10.7498/aps.35.1238
    [18] 陈立泉, 赵宗源, 王超英, 李子荣. 分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响. 物理学报, doi: 10.7498/aps.34.1027
    [19] 杨原, 俞文海. 等温热处理过程中一种非晶态Li+导体电导行为的研究. 物理学报, doi: 10.7498/aps.34.925
    [20] 陈立泉, 王昌庆, 王连忠, 肖超亮, 毕建清. LISICON(锗酸锌锂)单晶的Li+离子电导. 物理学报, doi: 10.7498/aps.29.661
计量
  • 文章访问数:  267
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-05-01
  • 上网日期:  2024-05-17

/

返回文章
返回