搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式

吴晓庆 杨期科 黄宏华 青春 胡晓丹 王英俭

引用本文:
Citation:

大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式

吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭

Study of ${\boldsymbol C_{\boldsymbol n}^{\boldsymbol 2}}$ profile model by atmospheric optical turbulence model

Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian
PDF
HTML
导出引用
  • 由于大气湍流的存在, 当光束在大气中传播时会发生相位起伏、光强闪烁等一系列湍流效应现象, 严重制约光电系统的性能, 是造成天文观测困难的主要原因. 大气折射率结构常数$C_n^2$廓线是评估大气湍流效应的重要参数. 本文归纳了几种有代表性的$ C_n^2 $廓线模式, 提出了修正的CLEAR I夜晚模式; 分析了高美古、拉萨、大柴旦、茂名、荣成等5个实验点探空测量数据, 给出了5个实验点算术平均拟合的$ C_n^2 $廓线公式; 计算了各模式和测量数据在波长为0.5 μm时的大气相干长度$ {r_0} $、视宁度$ {\varepsilon _{{\text{FWHM}}}} $、等晕角$ {\theta _0} $、相干时间$ {\tau _0} $、等效高度$ \overline h $和等效风速$ \overline V $等大气光学参数以及各大气层$ C_n^2 $递减率和不同大气层湍流贡献百分比. 重点对H-V(5/7)模式的存疑、$ C_n^2 $廓线模式采用的平均方法、低平流层$ C_n^2 $是否具有统一的递减率等问题进行讨论并给出答案.
    Owing to the existence of atmospheric turbulence, a series of turbulence effects such as phase fluctuation and light intensity scintillation will occur when the electromagnetic waves propagates through the atmosphere, which seriously affects the performance of the electro-optic system, resulting in the difficulty of astronomical observation. The atmospheric refractive index structure constant ($ C_n^2 $) profile is an important parameter to evaluate the turbulence effects. This paper summarizes several representative $ C_n^2 $ profile models and analyzes the data using balloon-borne microthermal probes at five sites i.e. Gaomeigu, Lhasa, Dachaidan, Maoming, and Rongcheng. The atmospheirc optical parameters are calculated, such as coherence length, seeing, isoplanatie angle, coherence time, equivalent height, equivalent wind speed, drop-off rate and integrated contribution from each atmosphere layer. The formulas of five sites are developed by fitting the arithmetic average of measurements. Several troubling basic problems such as suspicion the H-V (5/7) model, the model developed by arithmetic average or geometric average, the problem whether there is a uniform lapse rate in the low stratosphere, are discussed and solved. The modified CLEAR I night model is given.
      通信作者: 吴晓庆, xqwu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 91752103, 41576185)和中国科学院战略性先导科技专项(A类) (批准号: CXJJ-19S028)资助的课题
      Corresponding author: Wu Xiao-Qing, xqwu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91752103, 41576185) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. CXJJ-19S028).
    [1]

    饶瑞中 2022 红外与激光工程 51 22Google Scholar

    Rao R Z 2022 Infrared Laser Eng. 51 22Google Scholar

    [2]

    Beland R 1993 The Infrared and Electro-Optical Systems Handbook (Bellingham, WA: SPIE, Optical Engineering Press) pp211–224

    [3]

    吴晓庆, 曾宗泳, 马成胜, 翁宁泉, 肖黎明 1996 量子电子学报 13 385

    Wu X Q, Zeng Z Y, Ma C S, Weng N Q, Xiao L M 1996 Chin. J. Quantum Electron. 13 385

    [4]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [5]

    Dewan E M, Good R E, Beland B, Brown J 1993 A Model for Cn2 Profiles Using Radiosonde Rata (Phillips Laboratory, Hansom Air Force Base) PL-TR-93-2043

    [6]

    Trinquet H, Vernin J 2007 Environ. Fluid Mech. 7 397Google Scholar

    [7]

    Tatarski V I 1961 Wave Propagation in a Turbulent Medium (New York: McGraw-Hill)

    [8]

    Jumper G Y, Beland R R 2000 31st AIAA Plasmadynamics and Lasers Conference Denver, CO, USA, June 19–22, 2000, AIAA-2000-2355

    [9]

    Parenti R R, Sasiela R J 1994 J. Opt. Soc. Am. A 11 288Google Scholar

    [10]

    Battles F P, Murphy E A, Noonan J P 1988 Phys. Scripta 37 151Google Scholar

    [11]

    吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 144Google Scholar

    Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 144Google Scholar

    [12]

    Good R, Beland R, Murphy E, Brown J, Dewan E 1988 SPIE 928 165

    [13]

    蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 物理学报 67 014206Google Scholar

    Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qing C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar

    [14]

    Han Y J, Wu X Q, Luo T, Qing C, Yang Q K, JinX M, Liu N N, Wu S, Su C D 2020 J. Opt. Soc. Am. A 37 995Google Scholar

    [15]

    Beland R R, Brown J H, Good R E, Murphy E A 1985 Optical Turbulence Characterization of AMOS Report AFGL-TR-88-xxxx

    [16]

    Tyson R K 1996 Appl. Opt. 35 3640

    [17]

    程知, 侯再红, 靖旭, 李菲, 陆茜茜, 于龙昆 2013 红外与激光工程 42 1562

    Cheng Z, Hou Z H, Jing X, Li F, Lu Q Q, Yu L K 2013 Infrared Laser Eng. 42 1562

    [18]

    Cheng Z, Tan F F, Jing X, He F, Qin L A, Hou Z H 2017 Chin. Opt. Lett. 15 020101Google Scholar

    [19]

    Balaley B, Peterson V L 1981 J. Appl. Meteor. 20 266Google Scholar

  • 图 1  湍流模式$ C_T^2 $, $ C_n^2 $, $ \rho $$(P/T^2)^2$的廓线

    Fig. 1.  Profiles of $ C_T^2 $, $ C_n^2 $, $ \rho $ and $(P/T^2)^2$ by models.

    图 2  5个实验点$ C_n^2 $实测和拟合廓线的比较

    Fig. 2.  Comparison of $ C_n^2 $ measured and fitting profiles of five sites.

    图 3  5实验点$ C_T^2 $, $ C_n^2 $ , $ \rho $$(P/T^2)^2$的廓线

    Fig. 3.  Profiles of $ C_T^2 $, $ C_n^2 $ , $ \rho $ and $(P/T^2)^2$ by measured in five sites.

    图 4  大柴旦各单次探空$ C_n^2 $廓线积分值$ {r_0} $与平均廓线积分值的比对

    Fig. 4.  Comparison between $ {r_0} $ of each sounding profile and $ {r_0} $ of fitting profle in Dachaidan.

    图 5  气象雷达和探空测量的低平流层$ C_n^2 $递减率随纬度的变化(*表示用气象雷达测量, #表示微温探空, 数据来自文献[10, 19])

    Fig. 5.  Variation of $ C_n^2 $ lapse rate of low stratosphere with latitude measured by meteorological rada and thermosonde (*refers to meteorological radar measurement, # refers to thermosonde, data are from Ref. [10, 19]).

    表 1  几种有代表性的$ C_n^2 $廓线模式简介

    Table 1.  Brief introduction of several typical $ C_n^2 $ profile models.

    模式名称模式种类海拔高度/km有效高度/km平均方式数据来源代表性
    夜晚白天日出
    SLC3.0620 (相对高度)几何平均光闪烁亚热带海洋
    大气湍流
    AFGL AMOS3.0630 (海拔高度)算术平均探空亚热带海洋
    大气湍流
    H-V(5/7)含有高空风速的$ C_n^2 $参数公式实际海拔
    高度/km
    24 (海拔高度)算术平均光闪烁、探空中纬度大气湍流
    CLEAR I1.2430 (海拔高度)算术平均探空低对流层风速
    下沙漠型湍流
    下载: 导出CSV

    表 2  模式廓线计算的$ {r_0} $, $ {\varepsilon _{{\text{FWHM}}}} $, $ {\theta _0} $, $ {\tau _0} $, $ \overline h $$ \overline V $

    Table 2.  The $ {r_0} $, $ {\varepsilon _{{\text{FWHM}}}} $, $ {\theta _0} $, $ {\tau _0} $, $ \overline h $ and $ \overline V $ calculated by $ C_n^2 $ models.

    $ {r_0} $/cm$ {\varepsilon _{{\text{FWHM}}}} $/μrad$ {\theta _0} $/μrad$ {\tau _0} $/ms$ \overline h $/m (AGL)$ \overline V $/(m·s–1)
    AFGL night8.95.5212.25.72260.74.9
    AFGL day7.36.714.43.55191.46.5
    AFGL sunrise15.33.215.35.39016.99.1
    H-V (5/7)5.09.846.91.92271.98.4
    CLEAR I night11.34.338.514.84179.12.4
    修正CLEAR I5.68.776.58.22684.22.1
    下载: 导出CSV

    表 3  模式中各大气层$ {r_0} $(i)对整层$ {r_0} $贡献占比

    Table 3.  Integrated contribution of coherence length from each atmosphere layer.

    AFGL nightAFGL dayAFGL sunriseH-V (5/7)CLEAR I night
    SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%
    11.081.37.740.336.722.93.343.852.930.458.610.950.412.137.4
    下载: 导出CSV

    表 4  模式中各大气层等晕角$ {\theta _0} $(i)对整层等晕角$ {\theta _0} $贡献占比

    Table 4.  Integrated contribution of isoplanatic angle from each atmosphere layer.

    AFGL nightAFGL dayAFGL sunriseH-V (5/7)CLEAR I night
    SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%SL/%BL/%FA/%
    0.06.593.50.00.499.60.00.799.30.03.396.60.41.797.4
    下载: 导出CSV

    表 5  修正的CLEAR I夜晚模式表达式

    Table 5.  Modified CLEAR I night model.

    边界层内    $ \lg (C_n^2)= a + bh + c{h^2} $   对流层内  $ \lg (C_n^2)= a + bh + c{h^2} $
    低平流层下   $\lg (C_n^2)= a + bh + c{h^2} + d\exp \big\{ { - 0.5 { {[{ {(h - e)} }/{f}]}^2} } \big\}$
    CLEAR I night模式/km修正CLEAR I night模式/km
    1.23 < h ≤ 2.132.13 < h ≤ 10.3410.34 < h ≤ 301.23 < h ≤ 2.132.13 < h ≤ 10.3410.34 < h ≤ 30
    a = –10.7025a = –16.2897a = –17.0577a = –9.7025a = –16.0897a = –16.6577
    b = –4.3507b = 0.0335b = –0.0449b = –4.3507b = 0.0435b = –0.0449
    c = 0.8141c = –0.0134c = –0.0005c = 0.6541c = –0.0134c = –0.0005
    d = 0.6181d = 0.1981
    e = 15.5617e = 15.5617
    f = 3.4666f = 3.4666
    下载: 导出CSV

    表 6  湍流模式各大气层$ C_T^2 $, $ C_n^2 $ , $ \rho $$(P/T^2)^2$的递减率

    Table 6.  Drop-off rate of $ C_T^2 $, $ C_n^2 $, $ \rho $ and $(P/T^2)^2$ in each atmosphere layer.

    $ {\text{DR}}(C_T^2) $$ {\text{DR}}(C_n^2) $$ {\text{DR}}(\rho ) $ ${\text{DR} }((P/T^2)^2)$
    SLBLFASLBLFASLBLFASLBLFA
    AFGL night9.6211.37–0.6110.3012.050.850.430.440.700.680.691.46
    AFGL day67.1514.84–0.8867.8315.530.580.430.440.700.680.691.46
    AFGL sunrise5.015.28–0.545.695.970.920.430.440.700.680.691.46
    H-V (5/7)41.9810.770.7642.6211.422.160.420.430.690.640.651.40
    CLEAR I17.361.72–0.6917.932.260.760.390.390.690.570.541.45
    修正 CLEAR I22.393.22–0.7222.963.760.730.390.390.690.570.541.45
    下载: 导出CSV

    表 7  外场探空实验基本信息

    Table 7.  Basic information of field thermosonde.

    地点经纬度海拔高度/m平均最大探测
    海拔高度/km
    早晨有效
    探空数
    夜晚有效
    探空数
    总有效
    探空数
    高美古26.41°N, 100.01°E323732.45178
    拉萨29.39°N, 91.08°E366031.194711
    大柴旦37.44°N, 95.20°E318337.00121325
    茂名21.27°N, 111.18°E1135.567411
    荣成36.46°N, 122.11°E8031.377613
    下载: 导出CSV

    表 8  5个测量点算术平均拟合的$ C_n^2 $廓线公式系数

    Table 8.  Coefficient of $ C_n^2 $ formula fitted by arithmetic average of five sites.

    abcdfig
    高美古$ 1 \times {10^{ - 40}} $33.310.393$ 6.2 \times {10^{ - 17}} $6.45$ 1.95 \times {10^{ - 15}} $0.0871
    拉萨$ 2.29 \times {10^{ - 22}} $9.101.227$ 6.62 \times {10^{ - 17}} $10.468$ 2.50 \times {10^{ - 16}} $0.0247
    大柴旦$ 4.45 \times {10^{ - 18}} $3.591.81$ 3.88 \times {10^{ - 17}} $13.24$ 7.14 \times {10^{ - 16}} $0.0459
    茂名$ 5.65 \times {10^{ - 20}} $5.462.31$ 2.12 \times {10^{ - 16}} $5.02$ 1.4 \times {10^{ - 15}} $0.305
    荣成$ 3.24 \times {10^{ - 24}} $13.200.767$ 1.58 \times {10^{ - 16}} $7.37$ 5.68 \times {10^{ - 15}} $0.0073
    下载: 导出CSV

    表 9  实测$ C_n^2 $廓线的校正后拟合决定系数(Radj-Square)

    Table 9.  Adjusted R square of fitting $ C_n^2 $ profile.

    高美古拉萨大柴旦茂名荣成
    $ C_n^2/{m^{ - 2/3}} $0.7730.7980.8340.7040.874
    下载: 导出CSV

    表 10  5实验点算术平均和几何平均廓线计算的$ {r_0} $, $ {\varepsilon _{{\text{FWHM}}}} $, $ {\theta _0} $, $ {\tau _0} $, $ \overline h $$ \overline V $

    Table 10.  The $ {r_0} $, $ {\varepsilon _{{\text{FWHM}}}} $, $ {\theta _0} $, $ {\tau _0} $, $ \overline h $ and $ \overline V $ calculated by $ C_n^2 $ profiles from arithmetic average and geometric average in five sites.

    $ {r_0} $/cm$ {\varepsilon _{{\text{FWHM}}}} $/μrad$ {\theta _0} $/μrad$ {\tau _0} $/ms$ \overline h $/km (AGL)$ \overline V $/(m·s–1)
    算术几何算术几何算术几何算术几何算术几何算术几何
    高美古11.018.24.52.75.210.91.63.06.6745.26822.219.1
    拉萨6.49.87.75.11.72.81.72.711.53311.06311.911.5
    大柴旦6.614.97.53.32.04.80.92.210.1729.65922.221.8
    茂名3.17.615.76.50.82.00.61.512.99311.77517.315.9
    荣成5.39.19.25.41.83.50.71.59.4548.17923.019.7
    下载: 导出CSV

    表 11  5实验点各大气层$ C_T^2 $, $ C_n^2 $以及$ \rho $$(P/T^2)^2$廓线的递减率

    Table 11.  Drop-off rate of $ C_T^2 $, $ C_n^2 $ , $ \rho $ and $(P/T^2)^2$ in each atmosphere layer of five sites.

    算术平均$ {\text{DR}}(C_T^2) $$ {\text{DR}}(C_n^2) $$ {\text{DR}}(\rho ) $${\text{DR} }((P/T^2)^2)$
    SLBLFASLBLFASLBLFASLBLFA
    高美古5.463.01–0.716.233.720.950.410.460.770.610.721.66
    拉萨9.95–0.80–0.6110.65–0.180.990.400.410.740.560.591.60
    大柴旦21.490.03–0.6722.870.610.970.410.400.760.640.551.64
    茂名18.072.94–0.9119.213.800.790.430.470.770.700.851.70
    荣成63.520.88–0.4866.591.710.990.440.470.710.710.821.47
    下载: 导出CSV

    表 12  模式廓线和实测廓线在低平流层的递减率

    Table 12.  Drop-off rate of model profile and measured profile in low stratosphere.

    ModelAFGL nightAFGL dayAFGL sunriseH-V(5/7)CLEAR I修正CLEAR高美古拉萨大柴旦茂名荣成
    ASL/km25—2925—2925—2917—2325—2925—2918—2618—2618—2618—2618—26
    DR($ C_n^2 $)0.850.580.922.160.760.730.950.990.970.790.99
    DR($ C_T^2 $)–0.61–0.88–0.540.76–0.69–0.72–0.71–0.61–0.67–0.91–0.48
    DR($ \rho $)0.700.700.700.690.690.690.770.740.760.770.71
    ${\text{DR} } \big(\big(P/T^2\big)^2\big)$ 1.461.461.461.401.451.451.661.601.641.701.47
    下载: 导出CSV
  • [1]

    饶瑞中 2022 红外与激光工程 51 22Google Scholar

    Rao R Z 2022 Infrared Laser Eng. 51 22Google Scholar

    [2]

    Beland R 1993 The Infrared and Electro-Optical Systems Handbook (Bellingham, WA: SPIE, Optical Engineering Press) pp211–224

    [3]

    吴晓庆, 曾宗泳, 马成胜, 翁宁泉, 肖黎明 1996 量子电子学报 13 385

    Wu X Q, Zeng Z Y, Ma C S, Weng N Q, Xiao L M 1996 Chin. J. Quantum Electron. 13 385

    [4]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [5]

    Dewan E M, Good R E, Beland B, Brown J 1993 A Model for Cn2 Profiles Using Radiosonde Rata (Phillips Laboratory, Hansom Air Force Base) PL-TR-93-2043

    [6]

    Trinquet H, Vernin J 2007 Environ. Fluid Mech. 7 397Google Scholar

    [7]

    Tatarski V I 1961 Wave Propagation in a Turbulent Medium (New York: McGraw-Hill)

    [8]

    Jumper G Y, Beland R R 2000 31st AIAA Plasmadynamics and Lasers Conference Denver, CO, USA, June 19–22, 2000, AIAA-2000-2355

    [9]

    Parenti R R, Sasiela R J 1994 J. Opt. Soc. Am. A 11 288Google Scholar

    [10]

    Battles F P, Murphy E A, Noonan J P 1988 Phys. Scripta 37 151Google Scholar

    [11]

    吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 144Google Scholar

    Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 144Google Scholar

    [12]

    Good R, Beland R, Murphy E, Brown J, Dewan E 1988 SPIE 928 165

    [13]

    蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 物理学报 67 014206Google Scholar

    Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qing C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar

    [14]

    Han Y J, Wu X Q, Luo T, Qing C, Yang Q K, JinX M, Liu N N, Wu S, Su C D 2020 J. Opt. Soc. Am. A 37 995Google Scholar

    [15]

    Beland R R, Brown J H, Good R E, Murphy E A 1985 Optical Turbulence Characterization of AMOS Report AFGL-TR-88-xxxx

    [16]

    Tyson R K 1996 Appl. Opt. 35 3640

    [17]

    程知, 侯再红, 靖旭, 李菲, 陆茜茜, 于龙昆 2013 红外与激光工程 42 1562

    Cheng Z, Hou Z H, Jing X, Li F, Lu Q Q, Yu L K 2013 Infrared Laser Eng. 42 1562

    [18]

    Cheng Z, Tan F F, Jing X, He F, Qin L A, Hou Z H 2017 Chin. Opt. Lett. 15 020101Google Scholar

    [19]

    Balaley B, Peterson V L 1981 J. Appl. Meteor. 20 266Google Scholar

  • [1] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展. 物理学报, 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [2] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [3] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆. 一个新的海边光学湍流外尺度和Cn2的廓线模式. 物理学报, 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [4] 袁保合, 曹文思, 葛向红, 程永光, 刘献省, 梁二军. Al3+/Mo6+双离子取代ZrV2O7中Zr4+/V5+实现近零膨胀. 物理学报, 2017, 66(7): 076501. doi: 10.7498/aps.66.076501
    [5] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度. 物理学报, 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [6] 程知, 谭逢富, 靖旭, 何枫, 侯再红. 双孔差分闪烁法测量大气湍流的理论与实验研究. 物理学报, 2016, 65(7): 074205. doi: 10.7498/aps.65.074205
    [7] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中. 远海海面大气光学湍流实验测量. 物理学报, 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [8] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流外尺度的实验研究. 物理学报, 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [9] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流空间相关特性的实验研究. 物理学报, 2015, 64(11): 114212. doi: 10.7498/aps.64.114212
    [10] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [11] 郭友明, 马晓燠, 饶长辉. 自适应光学控制系统对Kolmogorov湍流补偿的修正有效带宽. 物理学报, 2013, 62(13): 134207. doi: 10.7498/aps.62.134207
    [12] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [13] 张兰强, 顾乃庭, 饶长辉. 大气湍流三维波前探测模式层析算法分析. 物理学报, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501
    [14] 姜永恒, 孙成林, 李占龙, 曹安阳, 里佐威. 苯C—H伸缩振动弱增益模式的受激拉曼散射. 物理学报, 2011, 60(6): 064211. doi: 10.7498/aps.60.064211
    [15] 潘平平, 张彬. 基于M2因子测量的大气湍流参数的确定方法. 物理学报, 2011, 60(1): 014215. doi: 10.7498/aps.60.014215
    [16] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [17] 曹彪, 左剑, 里佐威, 欧阳顺利, 高淑琴, 陆国会, 姜永恒. CS2在C6H6中的弱费米共振特性及对Bertran公式修正. 物理学报, 2009, 58(5): 3538-3542. doi: 10.7498/aps.58.3538
    [18] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性. 物理学报, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [19] 赵勇, 诸葛向彬, 何业冶. 典型颗粒超导体YBa2Cu3O7/V2O5中临界电流随温度变化的特性. 物理学报, 1994, 43(10): 1693-1703. doi: 10.7498/aps.43.1693
    [20] 王晓春, 周定文, 张以谟. 非线性光学位相共轭实时补偿大气湍流扰动. 物理学报, 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
计量
  • 文章访问数:  4513
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-01-03
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回