搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人造钠信标角度非等晕性的实验研究

罗曦 李新阳 胡诗杰 黄奎 王晓云

引用本文:
Citation:

人造钠信标角度非等晕性的实验研究

罗曦, 李新阳, 胡诗杰, 黄奎, 王晓云

Experimental investigation of angular anisoplanatism for sodium beacon

Luo Xi, Li Xin-Yang, Hu Shi-Jie, Huang Kui, Wang Xiao-Yun
PDF
导出引用
  • 为实际验证较大角度偏移( 50 rad)条件下人造钠信标探测光路与科学目标光路之间经历大气湍流波前畸变的相关特性及其影响,开展了基于时序同步探测的人造钠信标角度非等晕性实验测量研究,利用单哈特曼波前传感器实现了对自然星回光点阵以及50 rad角度偏移钠信标共振回光点阵的同步测量,获得了时序同帧钠信标与自然星回光的波前序列,并从两者波前二维分布及Zernike模式的统计相关性、非等晕误差的Zernike模式统计分布特性及其对目标成像影响等方面对实验结果进行了较全面的分析.结果表明,50 rad的角度偏离导致两者波前仅低阶模式之间保持着一定相关性(如第39阶),而非同轴钠信标偏离望远镜接收口径的大气湍流误采样带来其探测波前与自然星波前之间部分高阶模式相关性的严重退化,致使目标成像点扩散函数Strehl比(0.310.22)、光学质量(2.703.35)的下降,该影响不容忽视.最后,依据实验大气条件完成非等晕误差测量结果与理论计算结果的对比分析,获得了理论与实验相符的结果.
    To understand the characteristics of the anisoplanatic error resulting from different return-light experiences between the sodium beacon with a greater angular offset and the science object through atmospheric turbulence, the angular anisoplanatism for sodium beacon is investigated experimentally based on the technique of synchronized range gating. The return-light spot arrays through turbulent atmosphere from the natural star and the sodium beacon with 50 rad angular offsets are synchronously collected by using a single Hartmann wavefront sensor, consequently the synchronous turbulence-induced wavefront distortion sequences are recovered for the on-axis natural star and the off-axis sodium beacon. According to the experimental data, the temporal correlations of the wavefront distributions and decomposed Zernike modes between the on-axis natural star and the off-axis sodium beacon are discussed. By comparing the off-axis sodium beacon with the on-axis natural star, we analyse the statistics of the acquired angular anisoplanatism error and its associated Zernike-modal variances for the off-axis sodium beacon, and derive the Zernike-modal relative anisoplanatic errors as well. Furthermore, the influence of the acquired angular anisoplanatism error on the quality of imaging point spread function (PSF) is studied. The experimental results show that the existence of 50 rad angular deviation between the sodium beacon and the natural star causes that there are a certain correlation between just low-order Zernike modes of these two types of wavefronts (e.g. from the 3rd order to the 9th order), but the correlations between other high-order Zernike modes of these two types of wavefronts are severely degenerated and even these modes are de-correlated, resulting from the improper turbulence probing with off-axis sodium beacon off the ray path from the natural star to the telescope aperture. The angular anisoplanatism error has a great influence on the quality of imaging PSF, which leads to a degradation of Strehl ratio of 0.31-0.22 and beam quality factor of 2.70-3.35. Therefore, the influence may not to be ignored. At the end of this paper, according to the derived experimental turbulence coherence length and the generalized Hufnagel-Valley model, we calculate the theoretical anisoplanatic phase variance for the sodium beacon with 50 rad angular offsets, which is in good accordance with the measured anisoplanatic phase variance. This investigation is useful in promoting our knowledge of sodium beacon angular anisoplanatism effect on turbulence probing.
      通信作者: 罗曦, luoxi@ioe.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61505215)资助的课题.
      Corresponding author: Luo Xi, luoxi@ioe.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61505215).
    [1]

    Foy R, Labeyrie A 1991 Nature 353 144

    [2]

    Fugate R Q, Fried D L, Ameer G A, Boeke B R, Browne S L, Roberts P H, Ruane R E, Tyler G A, Wopat L M 1991 Nature 353 144

    [3]

    Humphreys R A, Primmerman C A, Bradley L C, Herrmann J 1991 Opt. Lett. 16 1367

    [4]

    Humphreys R A, Bradley L C, Herrmann J 1992 Lincoln. Lab. J. 5 45

    [5]

    Xu Z Y, Bo Y, Peng Q J, Zhang Y D, Wei K, Xue S J, Feng L 2016 Infrared Laser Eng. 45 0101001 (in Chinese) [许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓 2016 红外与激光工程 45 0101001]

    [6]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham: SPIE Press) p69

    [7]

    Molodij G, Rousset G 1997 J. Opt. Soc. Am. A 14 1949

    [8]

    Shen F, Jiang W H 2003 Acta Opt. Sin. 23 348 (in Chinese) [沈锋, 姜文汉 2003 光学学报 23 348]

    [9]

    Wan M, Su Y, Xiang R J 2001 High Power Laser Part Beams 13 282 (in Chinese) [万敏, 苏毅, 向汝建 2001 强激光与粒子束 13 282]

    [10]

    Yan H X, Wu H L, Li S S, Chen S 2005 Proceedings of SPIE Anstronomical Adaptive Optics Systems and Applications Ⅱ San Diego, California, USA, August 3-4, 2005 p59030U

    [11]

    Luo X, Li X Y, Shao L, Hu S J, Huang K 2014 Proceedings of SPIE XX International Symposium on High-Power Laser Systems and Applications Chengdu, China, August 25-29, 2014 p92553A

    [12]

    Luo X, Li X Y 2014 Chin. J. Lasers 41 0612002 (in Chinese) [罗曦, 李新阳 2014 中国激光 41 0612002]

    [13]

    Luo X, Li X Y, Shao L, Huang K, Wang X Y 2014 Chin. J. Lasers 41 0612003 (in Chinese) [罗曦, 李新阳, 邵力, 黄奎, 王晓云 2014 中国激光 41 0612003]

    [14]

    Dam M A V, Sasiela R J, Bouchez A H, Mignant D L, Campbell R D, Chin J C Y, Hartman S K, Johansson E M, Lafon R E, Stomski P J, Summers D M, Wizinowich P L 2006 Proceedings of SPIE Advances in Adaptive Optics Ⅱ Orlando, Florida, USA, May 24, 2006 p627231

    [15]

    Zhou W C, Hu X Y, Yun Y, Tian X Q, Huang D Q 2014 Infrared Laser Eng. 43 1943 (in Chinese) [周文超, 胡晓阳, 云宇, 田小强, 黄德权 2014 红外与激光工程 43 1943]

    [16]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱 2015 物理学报 64 134207]

    [17]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (Oxford, New York USA: Oxford University Press) p85

    [18]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham, Washington USA: SPIE Press) p62

    [19]

    Li X Y, Wang C H, Xian H, Li M, Li M Q, Ren S H, Zhou L C, Wang X Y 2005 China Patent CN1570570A (in Chinsese) [李新阳, 王春鸿, 鲜浩, 李梅, 李明全, 任绍恒, 周璐春, 王晓云 2005 中国发明专利 CN1570570A]

    [20]

    Du X W 1997 Chin. J. Lasers 24 327 (in Chinese) [杜祥琬 1997 中国激光 24 327]

    [21]

    Du X W 2010 High Power Laser Part Beams 22 945 (in Chinese) [杜祥琬 2010 强激光与粒子束 22 945]

    [22]

    Li X Y, Luo X, Shao L, Huang K, Hu S J, Tian Y, Li M 2013 China Patent CN103335950A (in Chinese) [李新阳, 罗曦, 邵力, 黄奎, 胡诗杰, 田雨, 李敏 2013 中国发明专利 CN103335950A]

  • [1]

    Foy R, Labeyrie A 1991 Nature 353 144

    [2]

    Fugate R Q, Fried D L, Ameer G A, Boeke B R, Browne S L, Roberts P H, Ruane R E, Tyler G A, Wopat L M 1991 Nature 353 144

    [3]

    Humphreys R A, Primmerman C A, Bradley L C, Herrmann J 1991 Opt. Lett. 16 1367

    [4]

    Humphreys R A, Bradley L C, Herrmann J 1992 Lincoln. Lab. J. 5 45

    [5]

    Xu Z Y, Bo Y, Peng Q J, Zhang Y D, Wei K, Xue S J, Feng L 2016 Infrared Laser Eng. 45 0101001 (in Chinese) [许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓 2016 红外与激光工程 45 0101001]

    [6]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham: SPIE Press) p69

    [7]

    Molodij G, Rousset G 1997 J. Opt. Soc. Am. A 14 1949

    [8]

    Shen F, Jiang W H 2003 Acta Opt. Sin. 23 348 (in Chinese) [沈锋, 姜文汉 2003 光学学报 23 348]

    [9]

    Wan M, Su Y, Xiang R J 2001 High Power Laser Part Beams 13 282 (in Chinese) [万敏, 苏毅, 向汝建 2001 强激光与粒子束 13 282]

    [10]

    Yan H X, Wu H L, Li S S, Chen S 2005 Proceedings of SPIE Anstronomical Adaptive Optics Systems and Applications Ⅱ San Diego, California, USA, August 3-4, 2005 p59030U

    [11]

    Luo X, Li X Y, Shao L, Hu S J, Huang K 2014 Proceedings of SPIE XX International Symposium on High-Power Laser Systems and Applications Chengdu, China, August 25-29, 2014 p92553A

    [12]

    Luo X, Li X Y 2014 Chin. J. Lasers 41 0612002 (in Chinese) [罗曦, 李新阳 2014 中国激光 41 0612002]

    [13]

    Luo X, Li X Y, Shao L, Huang K, Wang X Y 2014 Chin. J. Lasers 41 0612003 (in Chinese) [罗曦, 李新阳, 邵力, 黄奎, 王晓云 2014 中国激光 41 0612003]

    [14]

    Dam M A V, Sasiela R J, Bouchez A H, Mignant D L, Campbell R D, Chin J C Y, Hartman S K, Johansson E M, Lafon R E, Stomski P J, Summers D M, Wizinowich P L 2006 Proceedings of SPIE Advances in Adaptive Optics Ⅱ Orlando, Florida, USA, May 24, 2006 p627231

    [15]

    Zhou W C, Hu X Y, Yun Y, Tian X Q, Huang D Q 2014 Infrared Laser Eng. 43 1943 (in Chinese) [周文超, 胡晓阳, 云宇, 田小强, 黄德权 2014 红外与激光工程 43 1943]

    [16]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱 2015 物理学报 64 134207]

    [17]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (Oxford, New York USA: Oxford University Press) p85

    [18]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham, Washington USA: SPIE Press) p62

    [19]

    Li X Y, Wang C H, Xian H, Li M, Li M Q, Ren S H, Zhou L C, Wang X Y 2005 China Patent CN1570570A (in Chinsese) [李新阳, 王春鸿, 鲜浩, 李梅, 李明全, 任绍恒, 周璐春, 王晓云 2005 中国发明专利 CN1570570A]

    [20]

    Du X W 1997 Chin. J. Lasers 24 327 (in Chinese) [杜祥琬 1997 中国激光 24 327]

    [21]

    Du X W 2010 High Power Laser Part Beams 22 945 (in Chinese) [杜祥琬 2010 强激光与粒子束 22 945]

    [22]

    Li X Y, Luo X, Shao L, Huang K, Hu S J, Tian Y, Li M 2013 China Patent CN103335950A (in Chinese) [李新阳, 罗曦, 邵力, 黄奎, 胡诗杰, 田雨, 李敏 2013 中国发明专利 CN103335950A]

  • [1] 陈克乐, 周家辉, 韩文雨, 饶学军, 郭友明, 饶长辉. 自适应光学系统最优模式增益的快速估计方法. 物理学报, 2023, 72(13): 139502. doi: 10.7498/aps.72.20230290
    [2] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除. 物理学报, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [3] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [4] 陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱. 基于同步探测的脉冲钠导星聚焦非等晕性实验研究. 物理学报, 2015, 64(13): 134207. doi: 10.7498/aps.64.134207
    [5] 唐艳秋, 孙强, 赵建, 姚凯男. 一种基于全息术的光学系统闭环像差补偿方法. 物理学报, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [6] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [7] 郭友明, 饶长辉, 鲍华, 张昂, 魏凯. 一种自适应光学系统响应矩阵的直接计算方法. 物理学报, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [8] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽. 物理学报, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] 王锋, 陈天江, 雒仲祥, 鲁燕华, 万敏, 彭博, 尹新启. 基于长脉冲光源的钠信标回光特性实验研究. 物理学报, 2014, 63(1): 014208. doi: 10.7498/aps.63.014208
    [10] 王宇煜, 高妍琦, 朱海东, 卢兴华, 张军勇, 郭亚晶, 惠宏超, 朱宝强. 包含波面校正的四程放大系统的准直问题研究. 物理学报, 2013, 62(5): 055201. doi: 10.7498/aps.62.055201
    [11] 刘超, 胡立发, 曹召良, 穆全全, 彭增辉, 宣丽. 快速响应的硅基纯相位液晶器件对动态大气湍流波前的校正能力研究. 物理学报, 2012, 61(8): 089501. doi: 10.7498/aps.61.089501
    [12] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [13] 刘超, 胡立发, 穆全全, 曹召良, 胡红斌, 张杏云, 芦永军, 宣丽. 用于开环液晶自适应光学系统的模式预测技术研究. 物理学报, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [14] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [15] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [16] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [17] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [18] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 李超宏, 鲜 浩, 姜文汉, 饶长辉. 用于白天自适应光学的波前探测方法分析. 物理学报, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
计量
  • 文章访问数:  6414
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-01-31
  • 刊出日期:  2018-05-05

/

返回文章
返回