搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于嵌套三角形包层结构负曲率太赫兹光纤的研究

孟淼 严德贤 李九生 孙帅

引用本文:
Citation:

基于嵌套三角形包层结构负曲率太赫兹光纤的研究

孟淼, 严德贤, 李九生, 孙帅

Research on negative curvature terahertz fiber based on nested triangle structure cladding

Meng Miao, Yan De-Xian, Li Jiu-Sheng, Sun Shuai
PDF
HTML
导出引用
  • 设计了一种新型负曲率太赫兹光纤, 光纤由六条均匀分布在包层内部并嵌套等边三角形结构的包层管组成. 通过改变包层管和三角形边的厚度来研究负曲率光纤的有效模场面积、纤芯功率比、限制损耗、色散等性能. 当包层管和三角形厚度为90 μm时, 光纤的限制损耗在2.36 THz时可以达到0.005 dB/cm, 当频率范围在2.1—2.8 THz时, 色散系数在 ± 0.19 ps/(THz·cm), 纤芯功率比达到了99%以上, 并且拥有较好的有效模场面积. 进一步, 将包层管和三角形边厚度保持在90 μm不变, 调整三角形边的弯曲程度, 继续研究以上性能, 结果表明在内弯曲的状态下可以将限制损耗降低60%. 该工作为高效率、高性能的太赫兹光纤提供了合理的结构设计以及理论分析.
    In the terahertz communication and imaging systems, terahertz fibers have aroused great interest in the past several years. Countering the terahertz wave applications ‘inefficient transmission’ calls for a rapid development in terahertz fibers that could achieve low confinement loss, chromatic dispersion and large refraction of power at the same time. In this paper, a new type of negative curvature terahertz fiber is designed, which consists of six cladding tubes evenly distributed in the cladding and nested with equilateral triangle structure. By using full vector finite element method and changing the thickness of cladding tube and triangle, the effective mode field area, core power ratio, confinement loss, dispersion and other parameters of negative curvature fiber are studied. Here, the thickness range of 70–100 μm is selected. It is found that the confinement loss of optical fiber can reach 0.005 dB/cm at 2.36 THz, the dispersion coefficient can float up and down at ±0.1 ps/(THz·cm) at the frequency range of 2.1–2.8 THz, the core power ratio can reach above 99% in the same frequency range. Compared with the known terahertz negative curvature fiber, the nested triangle negative curvature fiber has lower confinement loss and wide transmission bandwidth of 2.1–2.8 THz. After that, when the cladding tube and the triangle thickness are kept at 90 μm, the bending degree of the triangle edge is changed, and the above properties are further studied. When the triangle edge is bent in and out, the transmission performance of the fiber is analyzed. It is found that when the triangle edge is bent inward, the transmission characteristics of terahertz wave is much better than that when the triangle edge is bent outward. When the triangle edge is bent inwards, the confinement loss is obviously reduced, reaching 0.002 dB/cm at 2.36 THz. Compared with triangle straight edge, the confinement loss is reduced by 40% and still maintaining 99% core power ratio at certain frequency band. The designed terahertz fiber will have an important application value in the fields of sensing and imaging systems with low loss and wide bandwidth. This makes the Topas COC-based terahertz fiber very suitable for guiding terahertz wave over the desired frequency range.
      通信作者: 严德贤, yandexian1991@cjlu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61871355,61831012)
      Corresponding author: Yan De-Xian, yandexian1991@cjlu.edu.cn
    [1]

    Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y X, Tang L H, Feng J C, Guo J Q, Shi W, Zhong K, Tsang Y H, Yao J Q 2017 Photon. Res. 5 82Google Scholar

    [2]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 J. Lightwave Techonl. 34 3373Google Scholar

    [3]

    Li J S, Zouhdi S 2012 IEEE Photon. Technol. Lett. 24 625Google Scholar

    [4]

    Li J S, Li H, Zhang L 2015 IEEE Trans. Thz. Sci. Techn. 5 551Google Scholar

    [5]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [6]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [7]

    Li J S 2017 Opt. Express 25 19422Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清 2017 物理学报 66 094204Google Scholar

    Xiong M J, Li J Y, Luo X, Shen X, Peng J G, Li H Q 2017 Acta Phys. Sin. 66 094204Google Scholar

    [10]

    Yan D X, Li J S 2019 Optik 180 824Google Scholar

    [11]

    Chen H B, Wang H, Hou H L, Chen D R 2012 Opt. Commun. 285 3726Google Scholar

    [12]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [13]

    Habib M S, Bang O, Bache M 2015 Opt. Express 23 17394Google Scholar

    [14]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [15]

    Vincetti L, Setti V, Zoboli M 2010 IEEE Photonics Technol. Lett. 22 972Google Scholar

    [16]

    Wang Y Y, Couny F, Roberts P J, Benabid F 2010 Conference on Lasers and Electro-Optics, San Jose, California, United States, 16–21 May, 2010, pCPDB4

    [17]

    Setti V, Vincetti L, Argyros A 2013 Opt. Express 21 3388Google Scholar

    [18]

    Cruz A L S, Serrao V A, Barbosa C L, Franco M A R,Cordeiro M B C,Argyros A,Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI-45

    [19]

    Sultana J, Islam M S, Cordeiro C M B, Dinovitser A, Kaushik M, Ng Brian W H, Abbott D 2020 Fibers 8 14Google Scholar

    [20]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 Journal of Lightwave Technology 34 3373

    [21]

    张果, 孙帅, 张尧, 盛泉, 史伟, 姚建铨 2019 红外与激光工程 49 118Google Scholar

    Zhang G, Sun S, Zhang Y, Sheng Q, Shi W, Yao J Q 2019 Infrared and Laser Engineering. 49 118Google Scholar

    [22]

    Liu H, Wang Y, Xu D, et al. 2017 J. Phys. D Appl. Phys. 50 375103Google Scholar

    [23]

    Wu Z Q, Zhou X Y, Shi Z H, Xia H D, Huang J, Jiang X D, Wu W D 2016 Opt. Eng. 55 037105Google Scholar

    [24]

    Habib M A, Anower M S, Abdulrazak L F, Reza M S 2019 Opt. Fiber Technol. 52 101933Google Scholar

    [25]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [26]

    Zhang L, Ren G J, Yao J Q 2013 Optoelectron. Lett. 9 438Google Scholar

    [27]

    陈翔, 胡雄伟, 李进延 2019 激光与光电子学进展 56 050602Google Scholar

    Chen X, Hu X W, Li J Y 2019 Laser & Optoelectronics Progress 56 050602Google Scholar

    [28]

    Wu Z Q, Shi Z H, Xia H D, Zhou X Y, Deng Q H, Huang J, Jiang X D, Wu W D 2016 IEEE Photon. J. 8 1Google Scholar

    [29]

    Bikash K P, Kawsar A 2019 Opt. Fiber Technol. 53 102031Google Scholar

    [30]

    崔莉, 赵建林, 张晓娟, 杨德兴 2008 光学学报 28 1172Google Scholar

    Cui L, Zhao J L, Zhang X J, Yang D X 2008 Acta Optica Sinica 28 1172Google Scholar

    [31]

    姬江军, 孔德鹏, 马天, 何晓阳, 陈琦, 王丽莉 2014 红外与激光工程 43 1909Google Scholar

    Jiang J J, Kong D P, Ma T, He X Y, Chen Q, Wang L L 2014 Infrared and Laser Engineering 43 1909Google Scholar

    [32]

    Belardi W, C. Knight J 2013 Opt. Express 21 21912Google Scholar

  • 图 1  嵌套三角形结构负曲率空芯光纤结构图

    Fig. 1.  Structure of negative curvature hollow core fiber with nested triangle structure.

    图 2  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Fig. 2.  (a) Confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d)core power ratio versus frequency.

    图 3  光纤模场分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Fig. 3.  Fiber mode field distribution. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    图 4  外弯曲负曲率光纤结构图

    Fig. 4.  Structure diagram of external bending negative curvature fiber.

    图 5  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Fig. 5.  (a)confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d) power ratio curve with frequency.

    图 6  外弯曲光纤模场在不同频率时的分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Fig. 6.  The distribution of mode field of external bending fiber at different frequencies. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    图 7  内弯曲负曲率光纤结构图

    Fig. 7.  Internal bending negative curvature fiber structure diagram.

    图 8  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Fig. 8.  (a)confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d) power ratio curve with frequency.

    图 9  内弯曲光纤模场在不同频率时的分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Fig. 9.  The distribution of mode field of internal bending fiber at different frequencies. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    表 1  设计的光纤结构与其他结构的性能对比

    Table 1.  Performance comparison between the designed optical fiber structure and other structures.

    参考文献光纤结构频率/THz纤芯功率比/%限制损耗/dB·cm–1色散/ps·(THz·cm)–1Aeff/m2
    [17]电介质管包层0.8280.16
    [18]三角形包层0.21—0.3950.66
    [19]夹杂金属丝包层1.0990.000 058
    本文直边2.1—2.8990.005–0.19—0.191.5 × 10–6
    外弯曲2.06—2.62990.003–0.19—0.191.04 × 10–6
    内弯曲2.22—2.48990.002–0.02—0.21.08 × 10–6
    下载: 导出CSV
  • [1]

    Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y X, Tang L H, Feng J C, Guo J Q, Shi W, Zhong K, Tsang Y H, Yao J Q 2017 Photon. Res. 5 82Google Scholar

    [2]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 J. Lightwave Techonl. 34 3373Google Scholar

    [3]

    Li J S, Zouhdi S 2012 IEEE Photon. Technol. Lett. 24 625Google Scholar

    [4]

    Li J S, Li H, Zhang L 2015 IEEE Trans. Thz. Sci. Techn. 5 551Google Scholar

    [5]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [6]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [7]

    Li J S 2017 Opt. Express 25 19422Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清 2017 物理学报 66 094204Google Scholar

    Xiong M J, Li J Y, Luo X, Shen X, Peng J G, Li H Q 2017 Acta Phys. Sin. 66 094204Google Scholar

    [10]

    Yan D X, Li J S 2019 Optik 180 824Google Scholar

    [11]

    Chen H B, Wang H, Hou H L, Chen D R 2012 Opt. Commun. 285 3726Google Scholar

    [12]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [13]

    Habib M S, Bang O, Bache M 2015 Opt. Express 23 17394Google Scholar

    [14]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [15]

    Vincetti L, Setti V, Zoboli M 2010 IEEE Photonics Technol. Lett. 22 972Google Scholar

    [16]

    Wang Y Y, Couny F, Roberts P J, Benabid F 2010 Conference on Lasers and Electro-Optics, San Jose, California, United States, 16–21 May, 2010, pCPDB4

    [17]

    Setti V, Vincetti L, Argyros A 2013 Opt. Express 21 3388Google Scholar

    [18]

    Cruz A L S, Serrao V A, Barbosa C L, Franco M A R,Cordeiro M B C,Argyros A,Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI-45

    [19]

    Sultana J, Islam M S, Cordeiro C M B, Dinovitser A, Kaushik M, Ng Brian W H, Abbott D 2020 Fibers 8 14Google Scholar

    [20]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 Journal of Lightwave Technology 34 3373

    [21]

    张果, 孙帅, 张尧, 盛泉, 史伟, 姚建铨 2019 红外与激光工程 49 118Google Scholar

    Zhang G, Sun S, Zhang Y, Sheng Q, Shi W, Yao J Q 2019 Infrared and Laser Engineering. 49 118Google Scholar

    [22]

    Liu H, Wang Y, Xu D, et al. 2017 J. Phys. D Appl. Phys. 50 375103Google Scholar

    [23]

    Wu Z Q, Zhou X Y, Shi Z H, Xia H D, Huang J, Jiang X D, Wu W D 2016 Opt. Eng. 55 037105Google Scholar

    [24]

    Habib M A, Anower M S, Abdulrazak L F, Reza M S 2019 Opt. Fiber Technol. 52 101933Google Scholar

    [25]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [26]

    Zhang L, Ren G J, Yao J Q 2013 Optoelectron. Lett. 9 438Google Scholar

    [27]

    陈翔, 胡雄伟, 李进延 2019 激光与光电子学进展 56 050602Google Scholar

    Chen X, Hu X W, Li J Y 2019 Laser & Optoelectronics Progress 56 050602Google Scholar

    [28]

    Wu Z Q, Shi Z H, Xia H D, Zhou X Y, Deng Q H, Huang J, Jiang X D, Wu W D 2016 IEEE Photon. J. 8 1Google Scholar

    [29]

    Bikash K P, Kawsar A 2019 Opt. Fiber Technol. 53 102031Google Scholar

    [30]

    崔莉, 赵建林, 张晓娟, 杨德兴 2008 光学学报 28 1172Google Scholar

    Cui L, Zhao J L, Zhang X J, Yang D X 2008 Acta Optica Sinica 28 1172Google Scholar

    [31]

    姬江军, 孔德鹏, 马天, 何晓阳, 陈琦, 王丽莉 2014 红外与激光工程 43 1909Google Scholar

    Jiang J J, Kong D P, Ma T, He X Y, Chen Q, Wang L L 2014 Infrared and Laser Engineering 43 1909Google Scholar

    [32]

    Belardi W, C. Knight J 2013 Opt. Express 21 21912Google Scholar

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [3] 王鑫, 娄淑琴, 廉正刚. 空芯光子带隙光纤色散特性的实验研究. 物理学报, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [4] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [7] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [9] 杨旺喜, 周桂耀, 夏长明, 王伟, 胡慧军, 侯蓝田. C波段具有平坦近零色散光子晶体光纤的一种改进设计方法. 物理学报, 2011, 60(10): 104222. doi: 10.7498/aps.60.104222
    [10] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [11] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [12] 崔艳玲, 侯蓝田. 一种新型混合双包层光子晶体光纤的色散特性研究. 物理学报, 2010, 59(4): 2571-2576. doi: 10.7498/aps.59.2571
    [13] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [14] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [15] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [16] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [17] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [18] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  7769
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-05-15
  • 上网日期:  2020-05-15
  • 刊出日期:  2020-08-20

/

返回文章
返回